F. Utermohlen, D. B. Etter, David Borowsky, I. Herrmann, C. Schelling, F. Hutter, S. Sun, J. Burghartz
{"title":"用于远红外热成像应用的具有纳米等离子体吸收器的低成本微热计","authors":"F. Utermohlen, D. B. Etter, David Borowsky, I. Herrmann, C. Schelling, F. Hutter, S. Sun, J. Burghartz","doi":"10.1109/MEMSYS.2014.6765705","DOIUrl":null,"url":null,"abstract":"We present a scalable low-cost microbolometer technology platform which is based on separate fabrication of MEMS and read-out ASIC CMOS wafers. Mechanical, electrical and hermetical connection is achieved by Cu-based thermocompression bonding. The performance loss due to the resulting backside illumination of the sensor is compensated by an optimized microbolometer design including nano-scaled plasmonic absorbers, a dedicated pixel geometry and the use of highly temperature sensitive devices. The low-cost approach features CMOS compatible MEMS processes, wafer level packaging and uncooled operation of the sensor.","PeriodicalId":312056,"journal":{"name":"2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Low-cost microbolometer with nano-scaled plasmonic absorbers for far infrared thermal imaging applications\",\"authors\":\"F. Utermohlen, D. B. Etter, David Borowsky, I. Herrmann, C. Schelling, F. Hutter, S. Sun, J. Burghartz\",\"doi\":\"10.1109/MEMSYS.2014.6765705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a scalable low-cost microbolometer technology platform which is based on separate fabrication of MEMS and read-out ASIC CMOS wafers. Mechanical, electrical and hermetical connection is achieved by Cu-based thermocompression bonding. The performance loss due to the resulting backside illumination of the sensor is compensated by an optimized microbolometer design including nano-scaled plasmonic absorbers, a dedicated pixel geometry and the use of highly temperature sensitive devices. The low-cost approach features CMOS compatible MEMS processes, wafer level packaging and uncooled operation of the sensor.\",\"PeriodicalId\":312056,\"journal\":{\"name\":\"2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2014.6765705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2014.6765705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-cost microbolometer with nano-scaled plasmonic absorbers for far infrared thermal imaging applications
We present a scalable low-cost microbolometer technology platform which is based on separate fabrication of MEMS and read-out ASIC CMOS wafers. Mechanical, electrical and hermetical connection is achieved by Cu-based thermocompression bonding. The performance loss due to the resulting backside illumination of the sensor is compensated by an optimized microbolometer design including nano-scaled plasmonic absorbers, a dedicated pixel geometry and the use of highly temperature sensitive devices. The low-cost approach features CMOS compatible MEMS processes, wafer level packaging and uncooled operation of the sensor.