{"title":"Cu-Cu键中的空洞成熟","authors":"Hung-Che Liu, A. Gusak, K. Tu, Chih Chen","doi":"10.1109/LTB-3D53950.2021.9598384","DOIUrl":null,"url":null,"abstract":"Cu-Cu joints have potential in high performance electric product. Although the voids in the bonding interface was observed, there was no report on the size distribution and evolution of voids due to ripening. In this paper, the void size distribution under 200 °C for 30, 60 and 120 min is obtained by a specific direction. The average void diameter is 49 nm, 70 nm, and 96 nm for the joint annealed for 30, 60, and 120 min, respectively. A simple kinetic model of ripening is developed, and the relationship between radius and annealing time is in good agreement with experimental data.","PeriodicalId":198318,"journal":{"name":"2021 7th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Void ripening in Cu-Cu bonds\",\"authors\":\"Hung-Che Liu, A. Gusak, K. Tu, Chih Chen\",\"doi\":\"10.1109/LTB-3D53950.2021.9598384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cu-Cu joints have potential in high performance electric product. Although the voids in the bonding interface was observed, there was no report on the size distribution and evolution of voids due to ripening. In this paper, the void size distribution under 200 °C for 30, 60 and 120 min is obtained by a specific direction. The average void diameter is 49 nm, 70 nm, and 96 nm for the joint annealed for 30, 60, and 120 min, respectively. A simple kinetic model of ripening is developed, and the relationship between radius and annealing time is in good agreement with experimental data.\",\"PeriodicalId\":198318,\"journal\":{\"name\":\"2021 7th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LTB-3D53950.2021.9598384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LTB-3D53950.2021.9598384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cu-Cu joints have potential in high performance electric product. Although the voids in the bonding interface was observed, there was no report on the size distribution and evolution of voids due to ripening. In this paper, the void size distribution under 200 °C for 30, 60 and 120 min is obtained by a specific direction. The average void diameter is 49 nm, 70 nm, and 96 nm for the joint annealed for 30, 60, and 120 min, respectively. A simple kinetic model of ripening is developed, and the relationship between radius and annealing time is in good agreement with experimental data.