基于模糊优化的Dodge - Romig双采样方案

Reay-Chen Wang, Chung-Ho Chen
{"title":"基于模糊优化的Dodge - Romig双采样方案","authors":"Reay-Chen Wang, Chung-Ho Chen","doi":"10.1108/13598539710159086","DOIUrl":null,"url":null,"abstract":"Considers that the problem of determining the Dodge‐Romig lot tolerance per cent defective (LTPD) double sampling plan (DSP) under the fuzzy environment satisfies the consumer’s risk closely and is an extension of Chakraborty’s work. Models the problem as fuzzy mathematical programming (FMP). A linear membership function and the minimum operator are assumed in FMP. The solution of the proposed model has a smaller average total inspection (ATI) than those of the traditional Dodge‐Romig LTPD DSP and Chakraborty’s.","PeriodicalId":376191,"journal":{"name":"International Journal of Quality Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1997-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Dodge‐Romig double sampling plans based on fuzzy optimization\",\"authors\":\"Reay-Chen Wang, Chung-Ho Chen\",\"doi\":\"10.1108/13598539710159086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considers that the problem of determining the Dodge‐Romig lot tolerance per cent defective (LTPD) double sampling plan (DSP) under the fuzzy environment satisfies the consumer’s risk closely and is an extension of Chakraborty’s work. Models the problem as fuzzy mathematical programming (FMP). A linear membership function and the minimum operator are assumed in FMP. The solution of the proposed model has a smaller average total inspection (ATI) than those of the traditional Dodge‐Romig LTPD DSP and Chakraborty’s.\",\"PeriodicalId\":376191,\"journal\":{\"name\":\"International Journal of Quality Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quality Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/13598539710159086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quality Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/13598539710159086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

认为模糊环境下Dodge - Romig批次容许缺陷率(LTPD)双重抽样方案(DSP)的确定问题能很好地满足消费者的风险,是Chakraborty工作的延伸。将该问题建模为模糊数学规划(FMP)。在FMP中假设线性隶属函数和最小算子。该模型的解比传统Dodge - Romig LTPD DSP和Chakraborty的解具有更小的平均总检测(ATI)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Dodge‐Romig double sampling plans based on fuzzy optimization
Considers that the problem of determining the Dodge‐Romig lot tolerance per cent defective (LTPD) double sampling plan (DSP) under the fuzzy environment satisfies the consumer’s risk closely and is an extension of Chakraborty’s work. Models the problem as fuzzy mathematical programming (FMP). A linear membership function and the minimum operator are assumed in FMP. The solution of the proposed model has a smaller average total inspection (ATI) than those of the traditional Dodge‐Romig LTPD DSP and Chakraborty’s.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信