GDOT:基于石墨烯的点积计算纳米函数

Ning Wang, Sujan Kumar Gonugondla, Ihab Nahlus, Naresh R Shanbhag, E. Pop
{"title":"GDOT:基于石墨烯的点积计算纳米函数","authors":"Ning Wang, Sujan Kumar Gonugondla, Ihab Nahlus, Naresh R Shanbhag, E. Pop","doi":"10.1109/VLSIT.2016.7573377","DOIUrl":null,"url":null,"abstract":"Though much excitement surrounds two-dimensional (2D) beyond CMOS fabrics like graphene and MoS2, most efforts have focused on individual devices, with few high-level implementations. Here we present the first graphene-based dot-product nanofunction (GDOT) using a mixed-signal architecture. Dot product kernels are essential for emerging image processing and neuromorphic computing applications, where energy efficiency is prioritized. SPICE simulations of GDOT implementing a Gaussian blur show up to ~104 greater signal-to-noise ratio (SNR) over CMOS based implementations - a direct result of higher graphene mobility in a circuit tolerant to low on/off ratios. Energy consumption is nearly equivalent, implying the GDOT can operate faster at higher SNR than CMOS counter-parts while preserving energy benefits over digital implementations. We implement a prototype 2-input GDOT on a wafer-scale 4\" process, with measured results confirming dot-product operation and lower than expected computation error.","PeriodicalId":129300,"journal":{"name":"2016 IEEE Symposium on VLSI Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"GDOT: A graphene-based nanofunction for dot-product computation\",\"authors\":\"Ning Wang, Sujan Kumar Gonugondla, Ihab Nahlus, Naresh R Shanbhag, E. Pop\",\"doi\":\"10.1109/VLSIT.2016.7573377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Though much excitement surrounds two-dimensional (2D) beyond CMOS fabrics like graphene and MoS2, most efforts have focused on individual devices, with few high-level implementations. Here we present the first graphene-based dot-product nanofunction (GDOT) using a mixed-signal architecture. Dot product kernels are essential for emerging image processing and neuromorphic computing applications, where energy efficiency is prioritized. SPICE simulations of GDOT implementing a Gaussian blur show up to ~104 greater signal-to-noise ratio (SNR) over CMOS based implementations - a direct result of higher graphene mobility in a circuit tolerant to low on/off ratios. Energy consumption is nearly equivalent, implying the GDOT can operate faster at higher SNR than CMOS counter-parts while preserving energy benefits over digital implementations. We implement a prototype 2-input GDOT on a wafer-scale 4\\\" process, with measured results confirming dot-product operation and lower than expected computation error.\",\"PeriodicalId\":129300,\"journal\":{\"name\":\"2016 IEEE Symposium on VLSI Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIT.2016.7573377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.2016.7573377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

尽管人们对石墨烯和MoS2等CMOS结构之外的二维(2D)技术非常感兴趣,但大多数努力都集中在单个器件上,很少有高级实现。在这里,我们提出了第一个使用混合信号架构的基于石墨烯的点积纳米函数(GDOT)。点积核对于新兴的图像处理和神经形态计算应用是必不可少的,在这些应用中,能效是优先考虑的。实现高斯模糊的GDOT的SPICE模拟显示,与基于CMOS的实现相比,信噪比(SNR)提高了约104 -这是石墨烯在电路中耐受低开/关比的高迁移率的直接结果。能耗几乎相等,这意味着GDOT可以在更高的信噪比下比CMOS器件更快地运行,同时保持比数字实现的能量优势。我们在晶圆规模的4”工艺上实现了一个原型2输入GDOT,测量结果证实了点积运算,并且低于预期的计算误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GDOT: A graphene-based nanofunction for dot-product computation
Though much excitement surrounds two-dimensional (2D) beyond CMOS fabrics like graphene and MoS2, most efforts have focused on individual devices, with few high-level implementations. Here we present the first graphene-based dot-product nanofunction (GDOT) using a mixed-signal architecture. Dot product kernels are essential for emerging image processing and neuromorphic computing applications, where energy efficiency is prioritized. SPICE simulations of GDOT implementing a Gaussian blur show up to ~104 greater signal-to-noise ratio (SNR) over CMOS based implementations - a direct result of higher graphene mobility in a circuit tolerant to low on/off ratios. Energy consumption is nearly equivalent, implying the GDOT can operate faster at higher SNR than CMOS counter-parts while preserving energy benefits over digital implementations. We implement a prototype 2-input GDOT on a wafer-scale 4" process, with measured results confirming dot-product operation and lower than expected computation error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信