{"title":"电源集成电路技术展望:从设计实验室到晶圆厂","authors":"P. Igić, M. Elwin, P. Holland","doi":"10.1109/MIEL.2010.5490529","DOIUrl":null,"url":null,"abstract":"A case study regarding development of a 100V Power IC technology is presented in this paper. A combination of conventional cross sectional process and device simulations combined with top down and 3D device simulations have been used to design and optimise the integration of a 100V Lateral DMOS (LDMOS) device for high side bridge applications. This combined simulation approach can streamline the device design process and gain important information about end effects which are lost from 2D cross sectional simulations. Design solutions to negate detrimental end effects are proposed and optimised by top down and 3D simulations and subsequently proven on tested silicon. Different electrical isolation schemes have also been investigated.","PeriodicalId":271286,"journal":{"name":"2010 27th International Conference on Microelectronics Proceedings","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Perspective on Power IC technology: From design lab to wafer fab\",\"authors\":\"P. Igić, M. Elwin, P. Holland\",\"doi\":\"10.1109/MIEL.2010.5490529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A case study regarding development of a 100V Power IC technology is presented in this paper. A combination of conventional cross sectional process and device simulations combined with top down and 3D device simulations have been used to design and optimise the integration of a 100V Lateral DMOS (LDMOS) device for high side bridge applications. This combined simulation approach can streamline the device design process and gain important information about end effects which are lost from 2D cross sectional simulations. Design solutions to negate detrimental end effects are proposed and optimised by top down and 3D simulations and subsequently proven on tested silicon. Different electrical isolation schemes have also been investigated.\",\"PeriodicalId\":271286,\"journal\":{\"name\":\"2010 27th International Conference on Microelectronics Proceedings\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 27th International Conference on Microelectronics Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MIEL.2010.5490529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 27th International Conference on Microelectronics Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIEL.2010.5490529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Perspective on Power IC technology: From design lab to wafer fab
A case study regarding development of a 100V Power IC technology is presented in this paper. A combination of conventional cross sectional process and device simulations combined with top down and 3D device simulations have been used to design and optimise the integration of a 100V Lateral DMOS (LDMOS) device for high side bridge applications. This combined simulation approach can streamline the device design process and gain important information about end effects which are lost from 2D cross sectional simulations. Design solutions to negate detrimental end effects are proposed and optimised by top down and 3D simulations and subsequently proven on tested silicon. Different electrical isolation schemes have also been investigated.