基于布尔可满足性的诊断测试模式生成框架

Feijun Zheng, K. Cheng, Xiaolang Yan, J. Moondanos, Z. Hanna
{"title":"基于布尔可满足性的诊断测试模式生成框架","authors":"Feijun Zheng, K. Cheng, Xiaolang Yan, J. Moondanos, Z. Hanna","doi":"10.1109/ATS.2007.80","DOIUrl":null,"url":null,"abstract":"This paper presents a diagnostic test pattern generation (DTPG) framework based upon a Boolean Satisfiability engine. We first propose an enhanced miter-based model for distinguishing fault candidates that can achieve greater efficiency as well as can prove a group of undifferentiable faults. The model can also be used to generate diagnostic tests for distinguishing faults of different fault types. Based on this model, we propose a diagnostic pattern compaction strategy. By exploring \"don't cares \" at the primary inputs, the number of required diagnostic patterns can be reduced. Experimental results show that the proposed method achieves a greater diagnosis resolution when combined with existing approaches. Also, fewer diagnostic test patterns are needed.","PeriodicalId":289969,"journal":{"name":"16th Asian Test Symposium (ATS 2007)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"An Efficient Diagnostic Test Pattern Generation Framework Using Boolean Satisfiability\",\"authors\":\"Feijun Zheng, K. Cheng, Xiaolang Yan, J. Moondanos, Z. Hanna\",\"doi\":\"10.1109/ATS.2007.80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a diagnostic test pattern generation (DTPG) framework based upon a Boolean Satisfiability engine. We first propose an enhanced miter-based model for distinguishing fault candidates that can achieve greater efficiency as well as can prove a group of undifferentiable faults. The model can also be used to generate diagnostic tests for distinguishing faults of different fault types. Based on this model, we propose a diagnostic pattern compaction strategy. By exploring \\\"don't cares \\\" at the primary inputs, the number of required diagnostic patterns can be reduced. Experimental results show that the proposed method achieves a greater diagnosis resolution when combined with existing approaches. Also, fewer diagnostic test patterns are needed.\",\"PeriodicalId\":289969,\"journal\":{\"name\":\"16th Asian Test Symposium (ATS 2007)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"16th Asian Test Symposium (ATS 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATS.2007.80\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"16th Asian Test Symposium (ATS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATS.2007.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

提出了一种基于布尔可满足性引擎的诊断测试模式生成框架。首先,我们提出了一种增强的基于层序的候选断层识别模型,该模型可以获得更高的效率,并且可以证明一组不可微分的断层。该模型还可用于生成诊断测试,以区分不同故障类型的故障。基于该模型,我们提出了一种诊断模式压缩策略。通过在主要输入上探索“不关心”,可以减少所需诊断模式的数量。实验结果表明,该方法与现有方法相结合,具有较高的诊断分辨率。此外,需要的诊断测试模式也更少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Diagnostic Test Pattern Generation Framework Using Boolean Satisfiability
This paper presents a diagnostic test pattern generation (DTPG) framework based upon a Boolean Satisfiability engine. We first propose an enhanced miter-based model for distinguishing fault candidates that can achieve greater efficiency as well as can prove a group of undifferentiable faults. The model can also be used to generate diagnostic tests for distinguishing faults of different fault types. Based on this model, we propose a diagnostic pattern compaction strategy. By exploring "don't cares " at the primary inputs, the number of required diagnostic patterns can be reduced. Experimental results show that the proposed method achieves a greater diagnosis resolution when combined with existing approaches. Also, fewer diagnostic test patterns are needed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信