基于深度学习的简单草图交互式绘画体积云场景

Lida Huang, M. Eladhari, S. Magnússon, Thomas Westin, Nanxu Su
{"title":"基于深度学习的简单草图交互式绘画体积云场景","authors":"Lida Huang, M. Eladhari, S. Magnússon, Thomas Westin, Nanxu Su","doi":"10.1109/HSI55341.2022.9869481","DOIUrl":null,"url":null,"abstract":"Synthesizing realistic clouds is a complex and demanding task, as clouds are characterized by random shapes, complex scattering and turbulent appearances. Existing approaches either employ two-dimensional image matting or three-dimensional physical simulations. This paper proposes a novel sketch-to-image deep learning system using fast sketches to paint and edit volumetric clouds. We composed a dataset of 2000 real cloud images and translated simple strokes into authentic clouds based on a conditional generative adversarial network (cGAN). Compared to previous cloud simulation methods, our system demonstrates more efficient and straightforward processes to generate authentic clouds for computer graphics, providing a widely accessible sky scene design approach for use by novices, amateurs, and expert artists.","PeriodicalId":282607,"journal":{"name":"2022 15th International Conference on Human System Interaction (HSI)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactive Painting Volumetric Cloud Scenes with Simple Sketches Based on Deep Learning\",\"authors\":\"Lida Huang, M. Eladhari, S. Magnússon, Thomas Westin, Nanxu Su\",\"doi\":\"10.1109/HSI55341.2022.9869481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthesizing realistic clouds is a complex and demanding task, as clouds are characterized by random shapes, complex scattering and turbulent appearances. Existing approaches either employ two-dimensional image matting or three-dimensional physical simulations. This paper proposes a novel sketch-to-image deep learning system using fast sketches to paint and edit volumetric clouds. We composed a dataset of 2000 real cloud images and translated simple strokes into authentic clouds based on a conditional generative adversarial network (cGAN). Compared to previous cloud simulation methods, our system demonstrates more efficient and straightforward processes to generate authentic clouds for computer graphics, providing a widely accessible sky scene design approach for use by novices, amateurs, and expert artists.\",\"PeriodicalId\":282607,\"journal\":{\"name\":\"2022 15th International Conference on Human System Interaction (HSI)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 15th International Conference on Human System Interaction (HSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HSI55341.2022.9869481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 15th International Conference on Human System Interaction (HSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HSI55341.2022.9869481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于云具有随机形状、复杂散射和湍流的特征,因此合成真实的云是一项复杂而艰巨的任务。现有的方法要么采用二维图像抠图,要么采用三维物理模拟。本文提出了一种新的素描到图像的深度学习系统,使用快速素描来绘制和编辑体积云。我们构建了一个包含2000张真实云图的数据集,并基于条件生成对抗网络(cGAN)将简单的笔画转换成真实的云。与以前的云模拟方法相比,我们的系统展示了更有效和直接的过程,为计算机图形生成真实的云,为新手,业余爱好者和专家艺术家提供了广泛访问的天空场景设计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interactive Painting Volumetric Cloud Scenes with Simple Sketches Based on Deep Learning
Synthesizing realistic clouds is a complex and demanding task, as clouds are characterized by random shapes, complex scattering and turbulent appearances. Existing approaches either employ two-dimensional image matting or three-dimensional physical simulations. This paper proposes a novel sketch-to-image deep learning system using fast sketches to paint and edit volumetric clouds. We composed a dataset of 2000 real cloud images and translated simple strokes into authentic clouds based on a conditional generative adversarial network (cGAN). Compared to previous cloud simulation methods, our system demonstrates more efficient and straightforward processes to generate authentic clouds for computer graphics, providing a widely accessible sky scene design approach for use by novices, amateurs, and expert artists.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信