利用累积学习预测生产试验中的最小工作电压

Yen-Ting Kuo, Wei-Chen Lin, C. Chen, Chao-Ho Hsieh, Chien-Mo James Li, Eric Jia-Wei Fang, S. Hsueh
{"title":"利用累积学习预测生产试验中的最小工作电压","authors":"Yen-Ting Kuo, Wei-Chen Lin, C. Chen, Chao-Ho Hsieh, Chien-Mo James Li, Eric Jia-Wei Fang, S. Hsueh","doi":"10.1109/ITC50571.2021.00012","DOIUrl":null,"url":null,"abstract":"We propose a new methodology to predict minimum operating voltage (Vmin) for production chips. In addition, we propose two new key features to improve the prediction accuracy. Our proposed accumulative learning can reduce the impact of lot-to-lot variations. Experimental results on two 7nm industry designs (about 1.2M chips from 142 lots) show that we can achieve above 95% good prediction. Our methodology can save 75% test time compared with traditional testing. To implement this method, we will need to have a separate test flow for the initial training and accumulative training.","PeriodicalId":147006,"journal":{"name":"2021 IEEE International Test Conference (ITC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Minimum Operating Voltage Prediction in Production Test Using Accumulative Learning\",\"authors\":\"Yen-Ting Kuo, Wei-Chen Lin, C. Chen, Chao-Ho Hsieh, Chien-Mo James Li, Eric Jia-Wei Fang, S. Hsueh\",\"doi\":\"10.1109/ITC50571.2021.00012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new methodology to predict minimum operating voltage (Vmin) for production chips. In addition, we propose two new key features to improve the prediction accuracy. Our proposed accumulative learning can reduce the impact of lot-to-lot variations. Experimental results on two 7nm industry designs (about 1.2M chips from 142 lots) show that we can achieve above 95% good prediction. Our methodology can save 75% test time compared with traditional testing. To implement this method, we will need to have a separate test flow for the initial training and accumulative training.\",\"PeriodicalId\":147006,\"journal\":{\"name\":\"2021 IEEE International Test Conference (ITC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Test Conference (ITC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITC50571.2021.00012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Test Conference (ITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC50571.2021.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出一种新的方法来预测生产芯片的最小工作电压(Vmin)。此外,我们提出了两个新的关键特征来提高预测精度。我们提出的累积学习可以减少批次间差异的影响。在两个7nm工业设计(142批约120万个芯片)上的实验结果表明,我们可以达到95%以上的良好预测。与传统的测试方法相比,我们的方法可以节省75%的测试时间。为了实现这个方法,我们将需要对初始训练和累积训练有一个单独的测试流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimum Operating Voltage Prediction in Production Test Using Accumulative Learning
We propose a new methodology to predict minimum operating voltage (Vmin) for production chips. In addition, we propose two new key features to improve the prediction accuracy. Our proposed accumulative learning can reduce the impact of lot-to-lot variations. Experimental results on two 7nm industry designs (about 1.2M chips from 142 lots) show that we can achieve above 95% good prediction. Our methodology can save 75% test time compared with traditional testing. To implement this method, we will need to have a separate test flow for the initial training and accumulative training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信