用于抑制成型化合物中水分扩散的最佳填料几何形状

W. Ahn, S. Shin, R. Asadpour, D. Varghese, L. Nguyen, S. Krishnan, M. Alam
{"title":"用于抑制成型化合物中水分扩散的最佳填料几何形状","authors":"W. Ahn, S. Shin, R. Asadpour, D. Varghese, L. Nguyen, S. Krishnan, M. Alam","doi":"10.1109/IRPS.2016.7574625","DOIUrl":null,"url":null,"abstract":"Inorganic fillers, such as fused silica or organic clay, help tailor/co-optimize the mechanical toughness, thermal conductivity, and moisture diffusivity of polymer mold compounds used to package microelectronic integrated circuits. Despite long history and wide-spread current use, the optimization of filler-infused composites is generally empirical and therefore time-consuming. A physics-based predictive modeling will improve application-specific design of composites that would offer optimum performance and reliability. As an illustrative example, in this paper, we develop a general theory of polymer composites that anticipates the suppression of moisture diffusion as a function of fill-fraction, size-dispersion, shape, and topology of filler nanoparticles. Our results show that the best performance is obtained by incorporation rod-shaped fillers, randomly closed packed at maximum density (~60%). Our numerical results are succinctly captured by the analytical model based on generalized Maxwell Garnett effective medium theory. The analytical model can be used for initial optimization of mold compounds before large-scale numerical modeling is invoked and characterization experiments are designed.","PeriodicalId":172129,"journal":{"name":"2016 IEEE International Reliability Physics Symposium (IRPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Optimum filler geometry for suppression of moisture diffusion in molding compounds\",\"authors\":\"W. Ahn, S. Shin, R. Asadpour, D. Varghese, L. Nguyen, S. Krishnan, M. Alam\",\"doi\":\"10.1109/IRPS.2016.7574625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inorganic fillers, such as fused silica or organic clay, help tailor/co-optimize the mechanical toughness, thermal conductivity, and moisture diffusivity of polymer mold compounds used to package microelectronic integrated circuits. Despite long history and wide-spread current use, the optimization of filler-infused composites is generally empirical and therefore time-consuming. A physics-based predictive modeling will improve application-specific design of composites that would offer optimum performance and reliability. As an illustrative example, in this paper, we develop a general theory of polymer composites that anticipates the suppression of moisture diffusion as a function of fill-fraction, size-dispersion, shape, and topology of filler nanoparticles. Our results show that the best performance is obtained by incorporation rod-shaped fillers, randomly closed packed at maximum density (~60%). Our numerical results are succinctly captured by the analytical model based on generalized Maxwell Garnett effective medium theory. The analytical model can be used for initial optimization of mold compounds before large-scale numerical modeling is invoked and characterization experiments are designed.\",\"PeriodicalId\":172129,\"journal\":{\"name\":\"2016 IEEE International Reliability Physics Symposium (IRPS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Reliability Physics Symposium (IRPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRPS.2016.7574625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.2016.7574625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

无机填料,如熔融二氧化硅或有机粘土,有助于定制/共同优化用于封装微电子集成电路的聚合物模具化合物的机械韧性、导热性和水分扩散率。尽管填料注入复合材料有着悠久的历史和广泛的应用,但其优化通常是经验性的,因此非常耗时。基于物理的预测建模将改进复合材料的特定应用设计,从而提供最佳性能和可靠性。作为一个说明性的例子,在本文中,我们开发了聚合物复合材料的一般理论,该理论预测了填料纳米颗粒的填充分数、尺寸分散、形状和拓扑结构对水分扩散的抑制作用。结果表明,在最大密度(~60%)下,加入棒状填料获得最佳性能。基于广义麦克斯韦-加内特有效介质理论的解析模型简洁地反映了我们的数值结果。该解析模型可用于在大规模数值模拟和设计表征实验之前对模具化合物进行初始优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimum filler geometry for suppression of moisture diffusion in molding compounds
Inorganic fillers, such as fused silica or organic clay, help tailor/co-optimize the mechanical toughness, thermal conductivity, and moisture diffusivity of polymer mold compounds used to package microelectronic integrated circuits. Despite long history and wide-spread current use, the optimization of filler-infused composites is generally empirical and therefore time-consuming. A physics-based predictive modeling will improve application-specific design of composites that would offer optimum performance and reliability. As an illustrative example, in this paper, we develop a general theory of polymer composites that anticipates the suppression of moisture diffusion as a function of fill-fraction, size-dispersion, shape, and topology of filler nanoparticles. Our results show that the best performance is obtained by incorporation rod-shaped fillers, randomly closed packed at maximum density (~60%). Our numerical results are succinctly captured by the analytical model based on generalized Maxwell Garnett effective medium theory. The analytical model can be used for initial optimization of mold compounds before large-scale numerical modeling is invoked and characterization experiments are designed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信