CPI 在三维插层封装上引起的热机械应力

M. Lofrano, Mario Gonzalez
{"title":"CPI 在三维插层封装上引起的热机械应力","authors":"M. Lofrano, Mario Gonzalez","doi":"10.1109/EUROSIME.2014.6813821","DOIUrl":null,"url":null,"abstract":"In this work Finite Element Modeling (FEM) is used to investigate the stress and deformation induced by chip package interaction on a 3D interposer package. A Design Of Experiments (DOE) was set up and parameters as epoxy mold compound (EMC) material properties, EMC thickness and die thickness were considered to study their effect on stress and package deformation. The results indicate that using a polymer that combines optimized mechanical properties with specific geometric dimensions makes it possible to reduce the package warpage and consequently the stress in the die. For this study, a multi-level sub modeling technique is used to access the stress distribution in the very small features in the packages, such as Cu μbumps. The stress analysis showed that by increasing the die thickness, the stress induced around μbumps increases. The results also showed that the EMC thickness has less impact on stress around μbumps than the die thickness.","PeriodicalId":359430,"journal":{"name":"2014 15th International Conference on Thermal, Mechanical and Mulit-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Thermo-mechanical stress induced by CPI on 3D interposer package\",\"authors\":\"M. Lofrano, Mario Gonzalez\",\"doi\":\"10.1109/EUROSIME.2014.6813821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work Finite Element Modeling (FEM) is used to investigate the stress and deformation induced by chip package interaction on a 3D interposer package. A Design Of Experiments (DOE) was set up and parameters as epoxy mold compound (EMC) material properties, EMC thickness and die thickness were considered to study their effect on stress and package deformation. The results indicate that using a polymer that combines optimized mechanical properties with specific geometric dimensions makes it possible to reduce the package warpage and consequently the stress in the die. For this study, a multi-level sub modeling technique is used to access the stress distribution in the very small features in the packages, such as Cu μbumps. The stress analysis showed that by increasing the die thickness, the stress induced around μbumps increases. The results also showed that the EMC thickness has less impact on stress around μbumps than the die thickness.\",\"PeriodicalId\":359430,\"journal\":{\"name\":\"2014 15th International Conference on Thermal, Mechanical and Mulit-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 15th International Conference on Thermal, Mechanical and Mulit-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2014.6813821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 15th International Conference on Thermal, Mechanical and Mulit-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2014.6813821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本工作中,采用有限元模型(FEM)研究了芯片封装相互作用在三维中间层封装上引起的应力和变形。建立了实验设计(DOE),研究了环氧模复合材料(EMC)性能、EMC厚度和模具厚度等参数对应力和封装变形的影响。结果表明,使用一种结合了优化机械性能和特定几何尺寸的聚合物,可以减少封装翘曲,从而减少模具中的应力。在本研究中,采用多级子建模技术来获取封装中非常小的特征(如Cu μbumps)的应力分布。应力分析表明,随着模具厚度的增加,μ凸点周围的应力增大。结果还表明,电磁兼容厚度对μ凸点周围应力的影响小于模具厚度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermo-mechanical stress induced by CPI on 3D interposer package
In this work Finite Element Modeling (FEM) is used to investigate the stress and deformation induced by chip package interaction on a 3D interposer package. A Design Of Experiments (DOE) was set up and parameters as epoxy mold compound (EMC) material properties, EMC thickness and die thickness were considered to study their effect on stress and package deformation. The results indicate that using a polymer that combines optimized mechanical properties with specific geometric dimensions makes it possible to reduce the package warpage and consequently the stress in the die. For this study, a multi-level sub modeling technique is used to access the stress distribution in the very small features in the packages, such as Cu μbumps. The stress analysis showed that by increasing the die thickness, the stress induced around μbumps increases. The results also showed that the EMC thickness has less impact on stress around μbumps than the die thickness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信