T. Ogata, H. Ohba, J. Tani, Kazunori Komatani, HIroshi G. Okuno
{"title":"利用RNNPB提取物体的多模态动力学","authors":"T. Ogata, H. Ohba, J. Tani, Kazunori Komatani, HIroshi G. Okuno","doi":"10.20965/jrm.2005.p0681","DOIUrl":null,"url":null,"abstract":"Dynamic features play an important role in recognizing objects that have similar static features in colors and or shapes. This paper focuses on active sensing that exploits dynamic feature of an object. An extended version of the robot, Robovie-IIs, moves an object by its arm to obtain its dynamic features. Its issue is how to extract symbols from various kinds of temporal states of the object. We use the recurrent neural network with parametric bias (RNNPB) that generates self-organized nodes in the parametric bias space. The RNNPB with 42 neurons was trained with the data of sounds, trajectories, and tactile sensors generated while the robot was moving/hitting an object with its own arm. The clusters of 20 kinds of objects were successfully self-organized. The experiments with unknown (not trained) objects demonstrated that our method configured them in the PB space appropriately, which proves its generalization capability.","PeriodicalId":189219,"journal":{"name":"2005 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Extracting multi-modal dynamics of objects using RNNPB\",\"authors\":\"T. Ogata, H. Ohba, J. Tani, Kazunori Komatani, HIroshi G. Okuno\",\"doi\":\"10.20965/jrm.2005.p0681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic features play an important role in recognizing objects that have similar static features in colors and or shapes. This paper focuses on active sensing that exploits dynamic feature of an object. An extended version of the robot, Robovie-IIs, moves an object by its arm to obtain its dynamic features. Its issue is how to extract symbols from various kinds of temporal states of the object. We use the recurrent neural network with parametric bias (RNNPB) that generates self-organized nodes in the parametric bias space. The RNNPB with 42 neurons was trained with the data of sounds, trajectories, and tactile sensors generated while the robot was moving/hitting an object with its own arm. The clusters of 20 kinds of objects were successfully self-organized. The experiments with unknown (not trained) objects demonstrated that our method configured them in the PB space appropriately, which proves its generalization capability.\",\"PeriodicalId\":189219,\"journal\":{\"name\":\"2005 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/jrm.2005.p0681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jrm.2005.p0681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extracting multi-modal dynamics of objects using RNNPB
Dynamic features play an important role in recognizing objects that have similar static features in colors and or shapes. This paper focuses on active sensing that exploits dynamic feature of an object. An extended version of the robot, Robovie-IIs, moves an object by its arm to obtain its dynamic features. Its issue is how to extract symbols from various kinds of temporal states of the object. We use the recurrent neural network with parametric bias (RNNPB) that generates self-organized nodes in the parametric bias space. The RNNPB with 42 neurons was trained with the data of sounds, trajectories, and tactile sensors generated while the robot was moving/hitting an object with its own arm. The clusters of 20 kinds of objects were successfully self-organized. The experiments with unknown (not trained) objects demonstrated that our method configured them in the PB space appropriately, which proves its generalization capability.