带角间隔的UTBSOI MOSFET,用于节能应用

A. Sachid, C. Hu
{"title":"带角间隔的UTBSOI MOSFET,用于节能应用","authors":"A. Sachid, C. Hu","doi":"10.1109/VLSI-TSA.2018.8403825","DOIUrl":null,"url":null,"abstract":"Parasitic capacitance is a critical challenge in improving the device and circuit performance in nanoscale devices like the UTBSOI MOSFET and FinFET. Scaling the contact pitch decreases the separation between the gate and the source/drain contacts which increases the contribution of parasitic capacitance to the total capacitance as the devices are scaled. According to ITRS 2.0, the parasitic capacitance should be limited to be less than 60% of the total capacitance [1]. For sub- 20 nm node devices, introduction of source/drain underlaps improves the short-channel performance [2]. The additional resistance due to underlaps can be reduced by the introduction of higher-K spacers [3,4], and dual-K spacers trading-off parasitic capacitance [5-7]. On the other end, since air or vacuum has a dielectric constant of 1, vacuum or air-gap spacers can reduce the parasitic capacitance [8-12]. In underlapped nanoscale devices, corner spacer design in which a higher-K oxide is present only in the bottom corner of the gate and the rest of the spacer consists of a lower-K dielectric will be required to simultaneously reduce underlap resistance and parasitic capacitance [13-15]. Fig. 1 shows the different spacer design options explored such as the full spacer, dual-K spacer and corner spacer. The full spacer has a single dielectric material. The dual-K spacer has an inner higher-K and an outer lower-K dielectric. The corner spacer has a higher-K dielectric present only at the bottom corner of the gate and the rest of the spacer region is made up of a lower-K dielectric. The impact of corner spacer design on UTBSOI MOSFET has not been studied. In this paper, using TCAD simulations, we design and optimize corner spacer for UTBSOI MOSFET for the 11/10 nm node.","PeriodicalId":209993,"journal":{"name":"2018 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"UTBSOI MOSFET with corner spacers for energy-efficient applications\",\"authors\":\"A. Sachid, C. Hu\",\"doi\":\"10.1109/VLSI-TSA.2018.8403825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parasitic capacitance is a critical challenge in improving the device and circuit performance in nanoscale devices like the UTBSOI MOSFET and FinFET. Scaling the contact pitch decreases the separation between the gate and the source/drain contacts which increases the contribution of parasitic capacitance to the total capacitance as the devices are scaled. According to ITRS 2.0, the parasitic capacitance should be limited to be less than 60% of the total capacitance [1]. For sub- 20 nm node devices, introduction of source/drain underlaps improves the short-channel performance [2]. The additional resistance due to underlaps can be reduced by the introduction of higher-K spacers [3,4], and dual-K spacers trading-off parasitic capacitance [5-7]. On the other end, since air or vacuum has a dielectric constant of 1, vacuum or air-gap spacers can reduce the parasitic capacitance [8-12]. In underlapped nanoscale devices, corner spacer design in which a higher-K oxide is present only in the bottom corner of the gate and the rest of the spacer consists of a lower-K dielectric will be required to simultaneously reduce underlap resistance and parasitic capacitance [13-15]. Fig. 1 shows the different spacer design options explored such as the full spacer, dual-K spacer and corner spacer. The full spacer has a single dielectric material. The dual-K spacer has an inner higher-K and an outer lower-K dielectric. The corner spacer has a higher-K dielectric present only at the bottom corner of the gate and the rest of the spacer region is made up of a lower-K dielectric. The impact of corner spacer design on UTBSOI MOSFET has not been studied. In this paper, using TCAD simulations, we design and optimize corner spacer for UTBSOI MOSFET for the 11/10 nm node.\",\"PeriodicalId\":209993,\"journal\":{\"name\":\"2018 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSI-TSA.2018.8403825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI-TSA.2018.8403825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在UTBSOI MOSFET和FinFET等纳米器件中,寄生电容是提高器件和电路性能的关键挑战。缩放触点间距可以减小栅极和源/漏极触点之间的距离,从而增加寄生电容对总电容的贡献。根据ITRS 2.0,寄生电容应限制在总电容的60%以下[1]。对于20nm以下的节点器件,引入源极/漏极underlap可以提高短通道性能[2]。通过引入高k间隔器[3,4]和双k间隔器来抵消寄生电容[5-7],可以减少由欠接引起的额外电阻。另一方面,由于空气或真空的介电常数为1,真空或气隙间隔可以减小寄生电容[8-12]。在重叠纳米级器件中,需要采用角间隔设计,其中高k氧化物仅存在于栅极的底角,间隔的其余部分由低k介电介质组成,以同时降低重叠电阻和寄生电容[13-15]。图1展示了不同的隔离器设计方案,如全隔离器、双k隔离器和角隔离器。全间隔片采用单一介电材料。双k间隔片具有内部高k和外部低k介电。转角间隔层具有仅存在于栅极底部角落的高k介电,并且间隔层区域的其余部分由低k介电组成。角间隔设计对UTBSOI MOSFET的影响尚未得到研究。在本文中,我们使用TCAD仿真,设计和优化了11/10 nm节点的UTBSOI MOSFET的角间隔器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UTBSOI MOSFET with corner spacers for energy-efficient applications
Parasitic capacitance is a critical challenge in improving the device and circuit performance in nanoscale devices like the UTBSOI MOSFET and FinFET. Scaling the contact pitch decreases the separation between the gate and the source/drain contacts which increases the contribution of parasitic capacitance to the total capacitance as the devices are scaled. According to ITRS 2.0, the parasitic capacitance should be limited to be less than 60% of the total capacitance [1]. For sub- 20 nm node devices, introduction of source/drain underlaps improves the short-channel performance [2]. The additional resistance due to underlaps can be reduced by the introduction of higher-K spacers [3,4], and dual-K spacers trading-off parasitic capacitance [5-7]. On the other end, since air or vacuum has a dielectric constant of 1, vacuum or air-gap spacers can reduce the parasitic capacitance [8-12]. In underlapped nanoscale devices, corner spacer design in which a higher-K oxide is present only in the bottom corner of the gate and the rest of the spacer consists of a lower-K dielectric will be required to simultaneously reduce underlap resistance and parasitic capacitance [13-15]. Fig. 1 shows the different spacer design options explored such as the full spacer, dual-K spacer and corner spacer. The full spacer has a single dielectric material. The dual-K spacer has an inner higher-K and an outer lower-K dielectric. The corner spacer has a higher-K dielectric present only at the bottom corner of the gate and the rest of the spacer region is made up of a lower-K dielectric. The impact of corner spacer design on UTBSOI MOSFET has not been studied. In this paper, using TCAD simulations, we design and optimize corner spacer for UTBSOI MOSFET for the 11/10 nm node.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信