二维noc的容错和高自适应路由

Manoj Kumar, V. Laxmi, M. Gaur, M. Daneshtalab, M. Ebrahimi, Mark Zwolinski
{"title":"二维noc的容错和高自适应路由","authors":"Manoj Kumar, V. Laxmi, M. Gaur, M. Daneshtalab, M. Ebrahimi, Mark Zwolinski","doi":"10.1109/DFT.2014.6962100","DOIUrl":null,"url":null,"abstract":"Networks-on-Chip (NoCs) are emerging as a promising communication paradigm to overcome bottleneck of traditional bus-based interconnects for current microarchitectures (MCSoC and CMP). One of the known current problems in NoC routing is the use of acyclic Channel Dependency Graph (CDG) for deadlock freedom. This requirement forces certain routing turns to be prohibited, thus, reducing the degree of adaptiveness. In this paper, we propose a novel non-minimal turn model which allows cycles in CDG provided that Extended Channel Dependency Graph (ECDG) remains acyclic. The proposed turn model reduces number of restrictions on routing turns, hence able to provide path diversity through additional minimal and non-minimal routes between source and destination. We also develop a fault tolerant and congestion-aware routing algorithm based on the proposed turn model to demonstrate the effectiveness. In this algorithm, a non-minimal route is used only when links in minimal routes are congested or faulty. Average performance gain of the proposed method is up to 26% across all selected benchmarks when compared with DRFT and 12% when compared with LEAR for 7 × 7 mesh.","PeriodicalId":414665,"journal":{"name":"2014 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Fault tolerant and highly adaptive routing for 2D NoCs\",\"authors\":\"Manoj Kumar, V. Laxmi, M. Gaur, M. Daneshtalab, M. Ebrahimi, Mark Zwolinski\",\"doi\":\"10.1109/DFT.2014.6962100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Networks-on-Chip (NoCs) are emerging as a promising communication paradigm to overcome bottleneck of traditional bus-based interconnects for current microarchitectures (MCSoC and CMP). One of the known current problems in NoC routing is the use of acyclic Channel Dependency Graph (CDG) for deadlock freedom. This requirement forces certain routing turns to be prohibited, thus, reducing the degree of adaptiveness. In this paper, we propose a novel non-minimal turn model which allows cycles in CDG provided that Extended Channel Dependency Graph (ECDG) remains acyclic. The proposed turn model reduces number of restrictions on routing turns, hence able to provide path diversity through additional minimal and non-minimal routes between source and destination. We also develop a fault tolerant and congestion-aware routing algorithm based on the proposed turn model to demonstrate the effectiveness. In this algorithm, a non-minimal route is used only when links in minimal routes are congested or faulty. Average performance gain of the proposed method is up to 26% across all selected benchmarks when compared with DRFT and 12% when compared with LEAR for 7 × 7 mesh.\",\"PeriodicalId\":414665,\"journal\":{\"name\":\"2014 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DFT.2014.6962100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFT.2014.6962100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

片上网络(noc)正在成为一种有前途的通信模式,以克服当前微架构(MCSoC和CMP)中传统基于总线的互连的瓶颈。目前已知的NoC路由问题之一是使用无循环通道依赖图(CDG)来实现死锁自由。这个要求强制禁止某些路由转换,从而降低了自适应程度。在本文中,我们提出了一种新的非最小回合模型,该模型允许在扩展通道依赖图(ECDG)保持非循环的情况下,在CDG中存在循环。所提出的转弯模型减少了路由转弯的限制数量,从而能够通过在源和目的之间增加最小和非最小路径来提供路径多样性。我们还开发了一个基于所提出的转弯模型的容错和拥塞感知路由算法来证明该算法的有效性。在该算法中,只有当最小路由中的链路出现拥塞或故障时,才会使用非最小路由。与DRFT相比,该方法在所有选定的基准测试中的平均性能增益高达26%,与LEAR相比,在7 × 7网格下的平均性能增益高达12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault tolerant and highly adaptive routing for 2D NoCs
Networks-on-Chip (NoCs) are emerging as a promising communication paradigm to overcome bottleneck of traditional bus-based interconnects for current microarchitectures (MCSoC and CMP). One of the known current problems in NoC routing is the use of acyclic Channel Dependency Graph (CDG) for deadlock freedom. This requirement forces certain routing turns to be prohibited, thus, reducing the degree of adaptiveness. In this paper, we propose a novel non-minimal turn model which allows cycles in CDG provided that Extended Channel Dependency Graph (ECDG) remains acyclic. The proposed turn model reduces number of restrictions on routing turns, hence able to provide path diversity through additional minimal and non-minimal routes between source and destination. We also develop a fault tolerant and congestion-aware routing algorithm based on the proposed turn model to demonstrate the effectiveness. In this algorithm, a non-minimal route is used only when links in minimal routes are congested or faulty. Average performance gain of the proposed method is up to 26% across all selected benchmarks when compared with DRFT and 12% when compared with LEAR for 7 × 7 mesh.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信