高可靠性无铅分散IMC柱焊点的研制

Y. Hayashi, I. Shohji, Yusuke Nakata, Tomihito Hashimoto
{"title":"高可靠性无铅分散IMC柱焊点的研制","authors":"Y. Hayashi, I. Shohji, Yusuke Nakata, Tomihito Hashimoto","doi":"10.1109/EPTC.2015.7412284","DOIUrl":null,"url":null,"abstract":"The aim of this study is to create a high reliability solder joint for automotive applications by actively utilizing IMC formation in the joint. The method to disperse pillar-shaped IMCs in the solder joint with Cu was examined with four types of lead-free solder. In the joint with Sn-0.7Cu-0.05Ni (mass%), growth of pillar shaped (Cu, Ni)6Sn5 IMCs which connect Cu plates on both sides was observed when bonding was conducted at 300°C for 30 min. In the joint with Sn-3.0Ag-0.7Cu-5.0In (mass%), coarsen columnar CueSn5 IMCs which include a few mol % In grow in relatively random directions in bonding at 300°C for 30 min. The growth rate of IMCs in bonding is the largest among solder investigated. In the joint with Sn-5.0Sb (mass%), thick columnar CueSn5 IMCs grow from both Cu sides although there are no IMCs to connect Cu plates on both sides in bonding at 300°C for 30 min. For joints with Sn-3.0Ag-0.7Cu-5.0In and Sn-5.0Sb, an effectively IMC dispersed joint is expected to be fabricated by optimization of bonding conditions. In the joint with Sn-3.0Ag-0.5Cu (mass%), a thick scallop shaped IMC layer forms at the joint interface and thus it is difficult to fabricate pillar shaped IMCs to connect Cu plates on both sides.","PeriodicalId":418705,"journal":{"name":"2015 IEEE 17th Electronics Packaging and Technology Conference (EPTC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of high reliability lead-free solder joint dispersed IMC pillar\",\"authors\":\"Y. Hayashi, I. Shohji, Yusuke Nakata, Tomihito Hashimoto\",\"doi\":\"10.1109/EPTC.2015.7412284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study is to create a high reliability solder joint for automotive applications by actively utilizing IMC formation in the joint. The method to disperse pillar-shaped IMCs in the solder joint with Cu was examined with four types of lead-free solder. In the joint with Sn-0.7Cu-0.05Ni (mass%), growth of pillar shaped (Cu, Ni)6Sn5 IMCs which connect Cu plates on both sides was observed when bonding was conducted at 300°C for 30 min. In the joint with Sn-3.0Ag-0.7Cu-5.0In (mass%), coarsen columnar CueSn5 IMCs which include a few mol % In grow in relatively random directions in bonding at 300°C for 30 min. The growth rate of IMCs in bonding is the largest among solder investigated. In the joint with Sn-5.0Sb (mass%), thick columnar CueSn5 IMCs grow from both Cu sides although there are no IMCs to connect Cu plates on both sides in bonding at 300°C for 30 min. For joints with Sn-3.0Ag-0.7Cu-5.0In and Sn-5.0Sb, an effectively IMC dispersed joint is expected to be fabricated by optimization of bonding conditions. In the joint with Sn-3.0Ag-0.5Cu (mass%), a thick scallop shaped IMC layer forms at the joint interface and thus it is difficult to fabricate pillar shaped IMCs to connect Cu plates on both sides.\",\"PeriodicalId\":418705,\"journal\":{\"name\":\"2015 IEEE 17th Electronics Packaging and Technology Conference (EPTC)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 17th Electronics Packaging and Technology Conference (EPTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPTC.2015.7412284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 17th Electronics Packaging and Technology Conference (EPTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPTC.2015.7412284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究的目的是通过积极利用IMC形成,为汽车应用创造高可靠性的焊点。采用四种无铅焊料,研究了在含铜焊点中分散柱状IMCs的方法。联合与sn - 0.7 -铜- 0.05 -镍(质量%),增长支柱形状(铜、镍)6 sn5 imc连接铜盘子两边时观察到的焊接进行了30分钟的300°C。在联合sn - 3.0 - ag - -铜- 5.0 - 0.7(质量%),使变粗柱状CueSn5 imc包括几个摩尔%生长在相对随机方向键为30分钟在300°C。imc的增长率在焊料键是最大的调查。在含Sn-5.0Sb(质量%)的接头中,虽然在300℃下30min的键合过程中没有连接两侧Cu板的IMCs,但从Cu两侧生长出厚的柱状CueSn5 IMCs。对于含Sn-3.0Ag-0.7Cu-5.0In和Sn-5.0Sb的接头,通过优化键合条件,有望制备出有效的IMC分散接头。在Sn-3.0Ag-0.5Cu(质量%)的节理中,在节理界面处形成一层厚的扇贝形IMC层,难以制造出连接两侧Cu板的柱形IMC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of high reliability lead-free solder joint dispersed IMC pillar
The aim of this study is to create a high reliability solder joint for automotive applications by actively utilizing IMC formation in the joint. The method to disperse pillar-shaped IMCs in the solder joint with Cu was examined with four types of lead-free solder. In the joint with Sn-0.7Cu-0.05Ni (mass%), growth of pillar shaped (Cu, Ni)6Sn5 IMCs which connect Cu plates on both sides was observed when bonding was conducted at 300°C for 30 min. In the joint with Sn-3.0Ag-0.7Cu-5.0In (mass%), coarsen columnar CueSn5 IMCs which include a few mol % In grow in relatively random directions in bonding at 300°C for 30 min. The growth rate of IMCs in bonding is the largest among solder investigated. In the joint with Sn-5.0Sb (mass%), thick columnar CueSn5 IMCs grow from both Cu sides although there are no IMCs to connect Cu plates on both sides in bonding at 300°C for 30 min. For joints with Sn-3.0Ag-0.7Cu-5.0In and Sn-5.0Sb, an effectively IMC dispersed joint is expected to be fabricated by optimization of bonding conditions. In the joint with Sn-3.0Ag-0.5Cu (mass%), a thick scallop shaped IMC layer forms at the joint interface and thus it is difficult to fabricate pillar shaped IMCs to connect Cu plates on both sides.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信