刻蚀多层EUV掩模的图案检测

S. Iida, R. Hirano, Tsuyoshi Amano, Hidehiro Watanabe
{"title":"刻蚀多层EUV掩模的图案检测","authors":"S. Iida, R. Hirano, Tsuyoshi Amano, Hidehiro Watanabe","doi":"10.1117/12.2203123","DOIUrl":null,"url":null,"abstract":"Patterned mask inspection for an etched multilayer (ML) EUV mask was investigated. In order to optimize the mask structure from the standpoint of not only a pattern inspection by using a projection electron microscope (PEM), but also by considering the other fabrication processes using electron beam (EB) techniques such as CD metrology and mask repair, we employed a conductive layer between the ML and substrate. By measuring the secondary electron emission coefficients (SEECs) of the candidate materials for conductive layer, we evaluated the image contrast and the influence of charging effect. In the cases of 40-pair-ML, 16 nm sized extrusion and intrusion defects were found to be detectable more than 10 sigma in hp 44 nm, 40 nm, and 32 nm line and space (L/S) patterns. Reducing 40-pair-ML to 20-pair-ML degraded the image contrast and the defect detectability. However, by selecting B4C as a conductive layer, 16 nm sized defects remained detectable. These defects were also detected after the etched part was refilled with Si. Moreover, the simulation shows a high sensitivity for detecting the residual-type defects (etching residues). A double layer structure with 2.5-nm-thik B4C on metal film used as a conductive layer was found to have sufficient conductivity and also was found to be free from the surface charging effect and influence of native oxide.","PeriodicalId":308777,"journal":{"name":"SPIE Photomask Technology","volume":"9635 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pattern inspection of etched multilayer EUV mask\",\"authors\":\"S. Iida, R. Hirano, Tsuyoshi Amano, Hidehiro Watanabe\",\"doi\":\"10.1117/12.2203123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Patterned mask inspection for an etched multilayer (ML) EUV mask was investigated. In order to optimize the mask structure from the standpoint of not only a pattern inspection by using a projection electron microscope (PEM), but also by considering the other fabrication processes using electron beam (EB) techniques such as CD metrology and mask repair, we employed a conductive layer between the ML and substrate. By measuring the secondary electron emission coefficients (SEECs) of the candidate materials for conductive layer, we evaluated the image contrast and the influence of charging effect. In the cases of 40-pair-ML, 16 nm sized extrusion and intrusion defects were found to be detectable more than 10 sigma in hp 44 nm, 40 nm, and 32 nm line and space (L/S) patterns. Reducing 40-pair-ML to 20-pair-ML degraded the image contrast and the defect detectability. However, by selecting B4C as a conductive layer, 16 nm sized defects remained detectable. These defects were also detected after the etched part was refilled with Si. Moreover, the simulation shows a high sensitivity for detecting the residual-type defects (etching residues). A double layer structure with 2.5-nm-thik B4C on metal film used as a conductive layer was found to have sufficient conductivity and also was found to be free from the surface charging effect and influence of native oxide.\",\"PeriodicalId\":308777,\"journal\":{\"name\":\"SPIE Photomask Technology\",\"volume\":\"9635 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Photomask Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2203123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Photomask Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2203123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了刻蚀多层(ML) EUV掩模的图案掩模检测。为了从投影电子显微镜(PEM)模式检查的角度优化掩膜结构,同时考虑到电子束(EB)技术(如CD计量和掩膜修复)的其他制造工艺,我们在ML和衬底之间采用了导电层。通过测量导电层候选材料的二次电子发射系数(SEECs),评价了其成像对比度和充电效应的影响。在40对ml的情况下,发现16 nm尺寸的挤压和侵入缺陷在hp 44 nm, 40 nm和32 nm的线和空间(L/S)模式下可检测到超过10 sigma。将40对ml减少到20对ml会降低图像对比度和缺陷的可检测性。然而,通过选择B4C作为导电层,16 nm尺寸的缺陷仍然可以检测到。这些缺陷在蚀刻部分重新填充Si后也被检测到。此外,仿真结果表明,该方法对残馀型缺陷(蚀刻残馀)的检测具有较高的灵敏度。用2.5 nm厚的B4C在金属膜上作为导电层的双层结构具有足够的导电性,并且发现不受表面充电效应和天然氧化物的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pattern inspection of etched multilayer EUV mask
Patterned mask inspection for an etched multilayer (ML) EUV mask was investigated. In order to optimize the mask structure from the standpoint of not only a pattern inspection by using a projection electron microscope (PEM), but also by considering the other fabrication processes using electron beam (EB) techniques such as CD metrology and mask repair, we employed a conductive layer between the ML and substrate. By measuring the secondary electron emission coefficients (SEECs) of the candidate materials for conductive layer, we evaluated the image contrast and the influence of charging effect. In the cases of 40-pair-ML, 16 nm sized extrusion and intrusion defects were found to be detectable more than 10 sigma in hp 44 nm, 40 nm, and 32 nm line and space (L/S) patterns. Reducing 40-pair-ML to 20-pair-ML degraded the image contrast and the defect detectability. However, by selecting B4C as a conductive layer, 16 nm sized defects remained detectable. These defects were also detected after the etched part was refilled with Si. Moreover, the simulation shows a high sensitivity for detecting the residual-type defects (etching residues). A double layer structure with 2.5-nm-thik B4C on metal film used as a conductive layer was found to have sufficient conductivity and also was found to be free from the surface charging effect and influence of native oxide.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信