用非线性随机微分方程模拟逆三次分布

B. Kaulakys, M. Alaburda
{"title":"用非线性随机微分方程模拟逆三次分布","authors":"B. Kaulakys, M. Alaburda","doi":"10.1109/ICNF.2011.5994380","DOIUrl":null,"url":null,"abstract":"One of stylized facts emerging from statistical analysis of financial markets is the inverse cubic law for the cumulative distribution of a number of events of trades and of the logarithmic price change. A simple model, based on the point process model of 1/f noise, generating the long-range processes with the inverse cubic cumulative distribution is proposed and analyzed. Main assumptions of the model are proportional to the process intensity, 1/τ(t), stochasticity of large interevent time τ(t) and the Brownian motion of small interevent time.","PeriodicalId":137085,"journal":{"name":"2011 21st International Conference on Noise and Fluctuations","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling the inverse cubic distributions by nonlinear stochastic differential equations\",\"authors\":\"B. Kaulakys, M. Alaburda\",\"doi\":\"10.1109/ICNF.2011.5994380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of stylized facts emerging from statistical analysis of financial markets is the inverse cubic law for the cumulative distribution of a number of events of trades and of the logarithmic price change. A simple model, based on the point process model of 1/f noise, generating the long-range processes with the inverse cubic cumulative distribution is proposed and analyzed. Main assumptions of the model are proportional to the process intensity, 1/τ(t), stochasticity of large interevent time τ(t) and the Brownian motion of small interevent time.\",\"PeriodicalId\":137085,\"journal\":{\"name\":\"2011 21st International Conference on Noise and Fluctuations\",\"volume\":\"196 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 21st International Conference on Noise and Fluctuations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNF.2011.5994380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 21st International Conference on Noise and Fluctuations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNF.2011.5994380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

从金融市场的统计分析中出现的一个程式化事实是许多交易事件和对数价格变化的累积分布的逆三次定律。在1/f噪声点过程模型的基础上,提出了一种生成逆三次累积分布的远程过程的简单模型,并进行了分析。模型的主要假设与过程强度、1/τ(t)、大间隔时间τ(t)的随机性和小间隔时间布朗运动成正比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling the inverse cubic distributions by nonlinear stochastic differential equations
One of stylized facts emerging from statistical analysis of financial markets is the inverse cubic law for the cumulative distribution of a number of events of trades and of the logarithmic price change. A simple model, based on the point process model of 1/f noise, generating the long-range processes with the inverse cubic cumulative distribution is proposed and analyzed. Main assumptions of the model are proportional to the process intensity, 1/τ(t), stochasticity of large interevent time τ(t) and the Brownian motion of small interevent time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信