E. Mohapatra, S. Das, Tara Prasanna Dash, S. Dey, J. Jena, C. K. Maiti
{"title":"用于性能增强的AlGaN/GaN hemt应变工程","authors":"E. Mohapatra, S. Das, Tara Prasanna Dash, S. Dey, J. Jena, C. K. Maiti","doi":"10.1109/MOS-AK.2019.8902465","DOIUrl":null,"url":null,"abstract":"The heterostructure device designs are extending from Silicon to compound semiconductors e.g. III-V. Unlike use of the strain technology in Si devices, stressing methods have not yet been intentionally used in III-V semiconductor devices. In this work, we examine the potential of using strain engineering technology during device fabrication to alter GaN HEMT performance. We examine the process-induced stress effect on the electrical performance of AlGaN/GaN HEMTs via TCAD simulation.","PeriodicalId":178751,"journal":{"name":"2019 IEEE Conference on Modeling of Systems Circuits and Devices (MOS-AK India)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strain Engineering in AlGaN/GaN HEMTs for Performance Enhancement\",\"authors\":\"E. Mohapatra, S. Das, Tara Prasanna Dash, S. Dey, J. Jena, C. K. Maiti\",\"doi\":\"10.1109/MOS-AK.2019.8902465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The heterostructure device designs are extending from Silicon to compound semiconductors e.g. III-V. Unlike use of the strain technology in Si devices, stressing methods have not yet been intentionally used in III-V semiconductor devices. In this work, we examine the potential of using strain engineering technology during device fabrication to alter GaN HEMT performance. We examine the process-induced stress effect on the electrical performance of AlGaN/GaN HEMTs via TCAD simulation.\",\"PeriodicalId\":178751,\"journal\":{\"name\":\"2019 IEEE Conference on Modeling of Systems Circuits and Devices (MOS-AK India)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Conference on Modeling of Systems Circuits and Devices (MOS-AK India)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MOS-AK.2019.8902465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Conference on Modeling of Systems Circuits and Devices (MOS-AK India)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MOS-AK.2019.8902465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Strain Engineering in AlGaN/GaN HEMTs for Performance Enhancement
The heterostructure device designs are extending from Silicon to compound semiconductors e.g. III-V. Unlike use of the strain technology in Si devices, stressing methods have not yet been intentionally used in III-V semiconductor devices. In this work, we examine the potential of using strain engineering technology during device fabrication to alter GaN HEMT performance. We examine the process-induced stress effect on the electrical performance of AlGaN/GaN HEMTs via TCAD simulation.