预条件共轭梯度求解器的低开销容错性

A. Schöll, Claus Braun, M. Kochte, H. Wunderlich
{"title":"预条件共轭梯度求解器的低开销容错性","authors":"A. Schöll, Claus Braun, M. Kochte, H. Wunderlich","doi":"10.1109/DFT.2015.7315136","DOIUrl":null,"url":null,"abstract":"Linear system solvers are an integral part for many different compute-intensive applications and they benefit from the compute power of heterogeneous computer architectures. However, the growing spectrum of reliability threats for such nano-scaled CMOS devices makes the integration of fault tolerance mandatory. The preconditioned conjugate gradient (PCG) method is one widely used solver as it finds solutions typically faster compared to direct methods. Although this iterative approach is able to tolerate certain errors, latest research shows that the PCG solver is still vulnerable to transient effects. Even single errors, for instance, caused by marginal hardware, harsh environments, or particle radiation, can considerably affect execution times, or lead to silent data corruption. In this work, a novel fault-tolerant PCG solver with extremely low runtime overhead is proposed. Since the error detection method does not involve expensive operations, it scales very well with increasing problem sizes. In case of errors, the method selects between three different correction methods according to the identified error. Experimental results show a runtime overhead for error detection ranging only from 0.04% to 1.70%.","PeriodicalId":383972,"journal":{"name":"2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Low-overhead fault-tolerance for the preconditioned conjugate gradient solver\",\"authors\":\"A. Schöll, Claus Braun, M. Kochte, H. Wunderlich\",\"doi\":\"10.1109/DFT.2015.7315136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear system solvers are an integral part for many different compute-intensive applications and they benefit from the compute power of heterogeneous computer architectures. However, the growing spectrum of reliability threats for such nano-scaled CMOS devices makes the integration of fault tolerance mandatory. The preconditioned conjugate gradient (PCG) method is one widely used solver as it finds solutions typically faster compared to direct methods. Although this iterative approach is able to tolerate certain errors, latest research shows that the PCG solver is still vulnerable to transient effects. Even single errors, for instance, caused by marginal hardware, harsh environments, or particle radiation, can considerably affect execution times, or lead to silent data corruption. In this work, a novel fault-tolerant PCG solver with extremely low runtime overhead is proposed. Since the error detection method does not involve expensive operations, it scales very well with increasing problem sizes. In case of errors, the method selects between three different correction methods according to the identified error. Experimental results show a runtime overhead for error detection ranging only from 0.04% to 1.70%.\",\"PeriodicalId\":383972,\"journal\":{\"name\":\"2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DFT.2015.7315136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFT.2015.7315136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

线性系统求解器是许多不同的计算密集型应用程序的组成部分,它们受益于异构计算机体系结构的计算能力。然而,这种纳米级CMOS器件的可靠性威胁越来越大,使得容错集成成为必须。预条件共轭梯度法(PCG)是一种广泛使用的求解方法,因为它比直接方法更快地找到解。虽然这种迭代方法能够容忍一定的误差,但最新的研究表明,PCG求解器仍然容易受到瞬态效应的影响。即使是单个错误,例如,由边缘硬件、恶劣环境或粒子辐射引起的错误,也会极大地影响执行时间,或导致无声的数据损坏。本文提出了一种具有极低运行时开销的容错PCG求解器。由于错误检测方法不涉及昂贵的操作,因此随着问题规模的增加,它可以很好地扩展。当出现误差时,该方法根据识别出的误差在三种不同的校正方法中进行选择。实验结果表明,错误检测的运行时开销仅为0.04% ~ 1.70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-overhead fault-tolerance for the preconditioned conjugate gradient solver
Linear system solvers are an integral part for many different compute-intensive applications and they benefit from the compute power of heterogeneous computer architectures. However, the growing spectrum of reliability threats for such nano-scaled CMOS devices makes the integration of fault tolerance mandatory. The preconditioned conjugate gradient (PCG) method is one widely used solver as it finds solutions typically faster compared to direct methods. Although this iterative approach is able to tolerate certain errors, latest research shows that the PCG solver is still vulnerable to transient effects. Even single errors, for instance, caused by marginal hardware, harsh environments, or particle radiation, can considerably affect execution times, or lead to silent data corruption. In this work, a novel fault-tolerant PCG solver with extremely low runtime overhead is proposed. Since the error detection method does not involve expensive operations, it scales very well with increasing problem sizes. In case of errors, the method selects between three different correction methods according to the identified error. Experimental results show a runtime overhead for error detection ranging only from 0.04% to 1.70%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信