Satyanarayana Telikepalli, Madhavan Swaminathan, D. Keezer
{"title":"最大限度地减少同时开关噪声在降低功率与电力传输线路的高速信号","authors":"Satyanarayana Telikepalli, Madhavan Swaminathan, D. Keezer","doi":"10.1109/EPEPS.2012.6457836","DOIUrl":null,"url":null,"abstract":"Signal and power integrity are crucial for ensuring high performance in high speed digital systems. As the operating frequency of digital systems increases, the power and ground bounce created by simultaneous switching noise (SSN) has become a limiting factor for the performance of these devices. SSN is caused by parasitic inductance that exists in the power delivery network (PDN), and voltage fluctuations on the power and ground rails can lead to reduced noise margins and can limit the maximum frequency of a digital device. A new PDN design has been suggested that achieves significantly reduced SSN [1] by replacing the power plane structure with a power transmission line (PTL). In this paper, a new power delivery scheme is shown to significantly reduce switching noise at lower power. This concept has been demonstrated through theory, simulation, and measurements.","PeriodicalId":188377,"journal":{"name":"2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Minimizing simultaneous switching noise at reduced power with power transmission lines for high-speed signaling\",\"authors\":\"Satyanarayana Telikepalli, Madhavan Swaminathan, D. Keezer\",\"doi\":\"10.1109/EPEPS.2012.6457836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Signal and power integrity are crucial for ensuring high performance in high speed digital systems. As the operating frequency of digital systems increases, the power and ground bounce created by simultaneous switching noise (SSN) has become a limiting factor for the performance of these devices. SSN is caused by parasitic inductance that exists in the power delivery network (PDN), and voltage fluctuations on the power and ground rails can lead to reduced noise margins and can limit the maximum frequency of a digital device. A new PDN design has been suggested that achieves significantly reduced SSN [1] by replacing the power plane structure with a power transmission line (PTL). In this paper, a new power delivery scheme is shown to significantly reduce switching noise at lower power. This concept has been demonstrated through theory, simulation, and measurements.\",\"PeriodicalId\":188377,\"journal\":{\"name\":\"2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEPS.2012.6457836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS.2012.6457836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Minimizing simultaneous switching noise at reduced power with power transmission lines for high-speed signaling
Signal and power integrity are crucial for ensuring high performance in high speed digital systems. As the operating frequency of digital systems increases, the power and ground bounce created by simultaneous switching noise (SSN) has become a limiting factor for the performance of these devices. SSN is caused by parasitic inductance that exists in the power delivery network (PDN), and voltage fluctuations on the power and ground rails can lead to reduced noise margins and can limit the maximum frequency of a digital device. A new PDN design has been suggested that achieves significantly reduced SSN [1] by replacing the power plane structure with a power transmission line (PTL). In this paper, a new power delivery scheme is shown to significantly reduce switching noise at lower power. This concept has been demonstrated through theory, simulation, and measurements.