带硅光子谐振腔的屈曲声膜光学微机械超声传感器

W. Westerveld, S. M. Leinders, P. van Neer, H. Urbach, N. Jong, M. Verweij, X. Rottenberg, V. Rochus
{"title":"带硅光子谐振腔的屈曲声膜光学微机械超声传感器","authors":"W. Westerveld, S. M. Leinders, P. van Neer, H. Urbach, N. Jong, M. Verweij, X. Rottenberg, V. Rochus","doi":"10.1109/EUROSIME.2019.8724528","DOIUrl":null,"url":null,"abstract":"Future applications of ultrasonography in (bio-)medical imaging require ultrasound sensor matrices with small sensitive elements. Promising are opto-mechanical ultrasound sensors (OMUS) based on a silicon photonic ring resonator embedded in a silicon-dioxide acoustical membrane. This work presents new OMUS modelling: acousto-mechanical non-linear FEM and photonic circuit equations. We show that initial wafer stress needs to be considered in the design: the acoustical resonance frequency changes considerably and OMUS sensitivity differs for up-or downwards buckled membranes. Simulated acoustical resonance frequency agrees well with measurements, assuming realistic SOI wafer stress. Measured sensitivity showed large device-to-device variation and simulations agree within this order of magnitude. We conclude that careful modeling of stress is necessary (b) for the design of robust and sensitive sensors.","PeriodicalId":357224,"journal":{"name":"2019 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optical micro-machined ultrasound sensors with a silicon photonic resonator in a buckled acoustical membrane\",\"authors\":\"W. Westerveld, S. M. Leinders, P. van Neer, H. Urbach, N. Jong, M. Verweij, X. Rottenberg, V. Rochus\",\"doi\":\"10.1109/EUROSIME.2019.8724528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Future applications of ultrasonography in (bio-)medical imaging require ultrasound sensor matrices with small sensitive elements. Promising are opto-mechanical ultrasound sensors (OMUS) based on a silicon photonic ring resonator embedded in a silicon-dioxide acoustical membrane. This work presents new OMUS modelling: acousto-mechanical non-linear FEM and photonic circuit equations. We show that initial wafer stress needs to be considered in the design: the acoustical resonance frequency changes considerably and OMUS sensitivity differs for up-or downwards buckled membranes. Simulated acoustical resonance frequency agrees well with measurements, assuming realistic SOI wafer stress. Measured sensitivity showed large device-to-device variation and simulations agree within this order of magnitude. We conclude that careful modeling of stress is necessary (b) for the design of robust and sensitive sensors.\",\"PeriodicalId\":357224,\"journal\":{\"name\":\"2019 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2019.8724528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2019.8724528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

超声成像在(生物)医学成像中的未来应用需要具有小敏感元件的超声传感器矩阵。基于嵌入二氧化硅声学膜的硅光子环谐振器的光机械超声传感器(OMUS)很有前途。本文提出了新的OMUS模型:声力非线性有限元和光子电路方程。我们表明,初始晶圆应力需要在设计中考虑:声共振频率变化很大,OMUS灵敏度不同于向上或向下弯曲的膜。在假设实际SOI晶圆应力的情况下,模拟声共振频率与测量值吻合良好。测量的灵敏度显示出很大的器件间差异,模拟结果也在这个数量级内。我们得出结论,仔细的应力建模是必要的(b)设计稳健和敏感的传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optical micro-machined ultrasound sensors with a silicon photonic resonator in a buckled acoustical membrane
Future applications of ultrasonography in (bio-)medical imaging require ultrasound sensor matrices with small sensitive elements. Promising are opto-mechanical ultrasound sensors (OMUS) based on a silicon photonic ring resonator embedded in a silicon-dioxide acoustical membrane. This work presents new OMUS modelling: acousto-mechanical non-linear FEM and photonic circuit equations. We show that initial wafer stress needs to be considered in the design: the acoustical resonance frequency changes considerably and OMUS sensitivity differs for up-or downwards buckled membranes. Simulated acoustical resonance frequency agrees well with measurements, assuming realistic SOI wafer stress. Measured sensitivity showed large device-to-device variation and simulations agree within this order of magnitude. We conclude that careful modeling of stress is necessary (b) for the design of robust and sensitive sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信