{"title":"一种先进的2.5nm氧化氮栅极电介质,用于高可靠的0.25/spl μ m mosfet","authors":"Yamamoto, Ogura, Saito, Uwasawa, Tatsumi, Mogami","doi":"10.1109/VLSIT.1997.623687","DOIUrl":null,"url":null,"abstract":"Ultrathin gate dielectrics are important to realize high performance and low-voltage operation CMOS devices. An advanced ultrathin gate dielectric formation process, that is, direct nitridation of silicon and sequential oxidation, is proposed and evaluated to suppress boron penetration and to improve hot-carrier reliability. No boron penetration, longer hot-carrier lifetime and high drain current are achieved in MOSFETs with 2.5nm oxidized nitride gate dielectric.","PeriodicalId":414778,"journal":{"name":"1997 Symposium on VLSI Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An Advanced 2.5nm Oxidized Nitride Gate Dielectric For Highly Reliable 0.25/spl mu/m MOSFETs\",\"authors\":\"Yamamoto, Ogura, Saito, Uwasawa, Tatsumi, Mogami\",\"doi\":\"10.1109/VLSIT.1997.623687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrathin gate dielectrics are important to realize high performance and low-voltage operation CMOS devices. An advanced ultrathin gate dielectric formation process, that is, direct nitridation of silicon and sequential oxidation, is proposed and evaluated to suppress boron penetration and to improve hot-carrier reliability. No boron penetration, longer hot-carrier lifetime and high drain current are achieved in MOSFETs with 2.5nm oxidized nitride gate dielectric.\",\"PeriodicalId\":414778,\"journal\":{\"name\":\"1997 Symposium on VLSI Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1997 Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIT.1997.623687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1997 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.1997.623687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Advanced 2.5nm Oxidized Nitride Gate Dielectric For Highly Reliable 0.25/spl mu/m MOSFETs
Ultrathin gate dielectrics are important to realize high performance and low-voltage operation CMOS devices. An advanced ultrathin gate dielectric formation process, that is, direct nitridation of silicon and sequential oxidation, is proposed and evaluated to suppress boron penetration and to improve hot-carrier reliability. No boron penetration, longer hot-carrier lifetime and high drain current are achieved in MOSFETs with 2.5nm oxidized nitride gate dielectric.