实时工作负载建模的CPU利用率微基准测试

Chee Hoo Kok, Soon Ee Ong
{"title":"实时工作负载建模的CPU利用率微基准测试","authors":"Chee Hoo Kok, Soon Ee Ong","doi":"10.1109/ATS49688.2020.9301524","DOIUrl":null,"url":null,"abstract":"The major challenge when migrating platform to satisfy the current and future computing demands is to decide which is the most optimal option for migration. Without actually executing the workload in a platform, it is difficult to know the workload performance in the platform. However, comparing the workload performances between different platforms by testing the workload is very tedious and time consuming. This motivates us to design a modeling framework to predict the workload performance of CPU on different platforms without executing. The challenge for the modeling lies within the collection of highly correlated data to train a predictive model. In this paper, we present a novel CPU utilization (%CPU) micro-benchmarking method to collect the data needed as a vital step before proceeding to training phase.","PeriodicalId":220508,"journal":{"name":"2020 IEEE 29th Asian Test Symposium (ATS)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CPU Utilization Micro-Benchmarking for RealTime Workload Modeling\",\"authors\":\"Chee Hoo Kok, Soon Ee Ong\",\"doi\":\"10.1109/ATS49688.2020.9301524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The major challenge when migrating platform to satisfy the current and future computing demands is to decide which is the most optimal option for migration. Without actually executing the workload in a platform, it is difficult to know the workload performance in the platform. However, comparing the workload performances between different platforms by testing the workload is very tedious and time consuming. This motivates us to design a modeling framework to predict the workload performance of CPU on different platforms without executing. The challenge for the modeling lies within the collection of highly correlated data to train a predictive model. In this paper, we present a novel CPU utilization (%CPU) micro-benchmarking method to collect the data needed as a vital step before proceeding to training phase.\",\"PeriodicalId\":220508,\"journal\":{\"name\":\"2020 IEEE 29th Asian Test Symposium (ATS)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 29th Asian Test Symposium (ATS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATS49688.2020.9301524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 29th Asian Test Symposium (ATS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATS49688.2020.9301524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在迁移平台以满足当前和未来的计算需求时,主要的挑战是决定哪一个是迁移的最佳选择。如果没有在平台中实际执行工作负载,就很难了解平台中的工作负载性能。但是,通过测试工作负载来比较不同平台之间的工作负载性能是非常繁琐和耗时的。这促使我们设计一个建模框架来预测CPU在不同平台上的工作负载性能,而无需执行。建模的挑战在于收集高度相关的数据来训练预测模型。在本文中,我们提出了一种新的CPU利用率(%CPU)微基准测试方法来收集所需的数据,作为进入训练阶段之前的重要步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CPU Utilization Micro-Benchmarking for RealTime Workload Modeling
The major challenge when migrating platform to satisfy the current and future computing demands is to decide which is the most optimal option for migration. Without actually executing the workload in a platform, it is difficult to know the workload performance in the platform. However, comparing the workload performances between different platforms by testing the workload is very tedious and time consuming. This motivates us to design a modeling framework to predict the workload performance of CPU on different platforms without executing. The challenge for the modeling lies within the collection of highly correlated data to train a predictive model. In this paper, we present a novel CPU utilization (%CPU) micro-benchmarking method to collect the data needed as a vital step before proceeding to training phase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信