{"title":"驻极体偏置谐振辐射传感器","authors":"Seung Seob Lee, C. K. Yoon, S. Song, B. Ziaie","doi":"10.1109/MEMSYS.2014.6765738","DOIUrl":null,"url":null,"abstract":"Resonance-based microcantilevers have been widely explored for various sensing applications. Subjecting the cantilever to an electrets-generated electrostatic field allows for self-resonant sensing of ionizing radiation. This paper reports the development of the resonant radiation sensor consisting of a ZnO microcantilever and a Teflon electret. The electrostatic force generated by the electric field shifts the self-resonant frequency of the cantilever. For a 125 (L), 55 (W), and 4 (T) μm (length) cantilever, the sensor displayed a sensitivity of 24.24Hz/Gy when exposed to 2Gy of gamma radiation.","PeriodicalId":312056,"journal":{"name":"2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An electret-biased resonant radiation sensor\",\"authors\":\"Seung Seob Lee, C. K. Yoon, S. Song, B. Ziaie\",\"doi\":\"10.1109/MEMSYS.2014.6765738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resonance-based microcantilevers have been widely explored for various sensing applications. Subjecting the cantilever to an electrets-generated electrostatic field allows for self-resonant sensing of ionizing radiation. This paper reports the development of the resonant radiation sensor consisting of a ZnO microcantilever and a Teflon electret. The electrostatic force generated by the electric field shifts the self-resonant frequency of the cantilever. For a 125 (L), 55 (W), and 4 (T) μm (length) cantilever, the sensor displayed a sensitivity of 24.24Hz/Gy when exposed to 2Gy of gamma radiation.\",\"PeriodicalId\":312056,\"journal\":{\"name\":\"2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2014.6765738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2014.6765738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Resonance-based microcantilevers have been widely explored for various sensing applications. Subjecting the cantilever to an electrets-generated electrostatic field allows for self-resonant sensing of ionizing radiation. This paper reports the development of the resonant radiation sensor consisting of a ZnO microcantilever and a Teflon electret. The electrostatic force generated by the electric field shifts the self-resonant frequency of the cantilever. For a 125 (L), 55 (W), and 4 (T) μm (length) cantilever, the sensor displayed a sensitivity of 24.24Hz/Gy when exposed to 2Gy of gamma radiation.