一种具有高电压增益的SH0型铌酸锂反阻抗啁啾压缩机

T. Manzaneque, Ruochen Lu, Yansong Yang, S. Gong
{"title":"一种具有高电压增益的SH0型铌酸锂反阻抗啁啾压缩机","authors":"T. Manzaneque, Ruochen Lu, Yansong Yang, S. Gong","doi":"10.1109/MEMSYS.2018.8346672","DOIUrl":null,"url":null,"abstract":"We present a new type of acoustic devices that, for the first time, can simultaneously perform chirp compression and impedance transformation to achieve passive voltage amplification with a gain of 12. The device consists of an acoustic dispersive delay line (DDL) based on shear-horizontal waves (SH0) in lithium niobate (LiNbO3). SH0 waves are employed due to their demonstrated high electromechanical coupling (k2) of 39%, low propagation loss, and a slow phase velocity of 3700 m/s. As a result of these desirable features, the fabricated device demonstrates a large fractional bandwidth (FBW) of 50%, a low insertion loss (IL), a high processing gain (TB) of 76, and a compact size of 1.57 by 0.23 mm. In addition to the compression, the device harnesses an asymmetrical transduction scheme to provide a compounding voltage gain from impedance transformation. Consequently, it results in a much higher voltage at the device output, which can be exploited to attain a higher sensitivity for wake-up radio receivers.","PeriodicalId":400754,"journal":{"name":"2018 IEEE Micro Electro Mechanical Systems (MEMS)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An SH0 lithium niobate trans-impedance chirp compressor with high voltage gain\",\"authors\":\"T. Manzaneque, Ruochen Lu, Yansong Yang, S. Gong\",\"doi\":\"10.1109/MEMSYS.2018.8346672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new type of acoustic devices that, for the first time, can simultaneously perform chirp compression and impedance transformation to achieve passive voltage amplification with a gain of 12. The device consists of an acoustic dispersive delay line (DDL) based on shear-horizontal waves (SH0) in lithium niobate (LiNbO3). SH0 waves are employed due to their demonstrated high electromechanical coupling (k2) of 39%, low propagation loss, and a slow phase velocity of 3700 m/s. As a result of these desirable features, the fabricated device demonstrates a large fractional bandwidth (FBW) of 50%, a low insertion loss (IL), a high processing gain (TB) of 76, and a compact size of 1.57 by 0.23 mm. In addition to the compression, the device harnesses an asymmetrical transduction scheme to provide a compounding voltage gain from impedance transformation. Consequently, it results in a much higher voltage at the device output, which can be exploited to attain a higher sensitivity for wake-up radio receivers.\",\"PeriodicalId\":400754,\"journal\":{\"name\":\"2018 IEEE Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2018.8346672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2018.8346672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们首次提出了一种新型的声学器件,它可以同时进行啁啾压缩和阻抗变换,以实现增益为12的无源电压放大。该器件由铌酸锂(LiNbO3)中基于剪切水平波(SH0)的声色散延迟线(DDL)组成。采用SH0波是因为它们具有39%的高机电耦合(k2),低传播损耗和3700 m/s的慢相速度。由于这些理想的特性,制造的器件具有50%的大分数带宽(FBW),低插入损耗(IL), 76的高处理增益(TB),以及1.57 × 0.23 mm的紧凑尺寸。除了压缩之外,该器件还利用不对称转导方案从阻抗变换中提供复合电压增益。因此,它的结果在一个高得多的电压在设备输出,这可以被利用,以获得更高的灵敏度唤醒无线电接收机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An SH0 lithium niobate trans-impedance chirp compressor with high voltage gain
We present a new type of acoustic devices that, for the first time, can simultaneously perform chirp compression and impedance transformation to achieve passive voltage amplification with a gain of 12. The device consists of an acoustic dispersive delay line (DDL) based on shear-horizontal waves (SH0) in lithium niobate (LiNbO3). SH0 waves are employed due to their demonstrated high electromechanical coupling (k2) of 39%, low propagation loss, and a slow phase velocity of 3700 m/s. As a result of these desirable features, the fabricated device demonstrates a large fractional bandwidth (FBW) of 50%, a low insertion loss (IL), a high processing gain (TB) of 76, and a compact size of 1.57 by 0.23 mm. In addition to the compression, the device harnesses an asymmetrical transduction scheme to provide a compounding voltage gain from impedance transformation. Consequently, it results in a much higher voltage at the device output, which can be exploited to attain a higher sensitivity for wake-up radio receivers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信