基于改进LRCN模型的机械臂教学动态手势识别

Kaixiang Luan, T. Matsumaru
{"title":"基于改进LRCN模型的机械臂教学动态手势识别","authors":"Kaixiang Luan, T. Matsumaru","doi":"10.1109/ROBIO49542.2019.8961787","DOIUrl":null,"url":null,"abstract":"In this research, we focus on finding a new method of human-robot interaction in industrial environment. A vision-based dynamic hand gestures recognition system has been proposed for robot arm picking task. 8 dynamic hand gestures are captured for this task with a 100fps high speed camera. Based on the LRCN model, we combine the MobileNets (V2) and LSTM for this task, the MobileNets (V2) for extracting the image features and recognize the gestures, then, Long Short-Term Memory (LSTM) architecture for interpreting the features across time steps. Around 100 samples are taken for each gesture for training at first, then, the samples are augmented to 200 samples per gesture by data augmentation. Result shows that the model is able to learn the gestures varying in duration and complexity and gestures can be recognized in 88ms with 90.62% accuracy in the experiment on our hand gesture dataset.","PeriodicalId":121822,"journal":{"name":"2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Dynamic Hand Gesture Recognition for Robot Arm Teaching based on Improved LRCN Model\",\"authors\":\"Kaixiang Luan, T. Matsumaru\",\"doi\":\"10.1109/ROBIO49542.2019.8961787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, we focus on finding a new method of human-robot interaction in industrial environment. A vision-based dynamic hand gestures recognition system has been proposed for robot arm picking task. 8 dynamic hand gestures are captured for this task with a 100fps high speed camera. Based on the LRCN model, we combine the MobileNets (V2) and LSTM for this task, the MobileNets (V2) for extracting the image features and recognize the gestures, then, Long Short-Term Memory (LSTM) architecture for interpreting the features across time steps. Around 100 samples are taken for each gesture for training at first, then, the samples are augmented to 200 samples per gesture by data augmentation. Result shows that the model is able to learn the gestures varying in duration and complexity and gestures can be recognized in 88ms with 90.62% accuracy in the experiment on our hand gesture dataset.\",\"PeriodicalId\":121822,\"journal\":{\"name\":\"2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO49542.2019.8961787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO49542.2019.8961787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本研究中,我们的重点是寻找一种工业环境下人机交互的新方法。针对机械臂拾取任务,提出了一种基于视觉的动态手势识别系统。使用100fps高速相机捕捉8个动态手势。基于LRCN模型,我们将MobileNets (V2)和LSTM相结合,MobileNets (V2)用于提取图像特征并识别手势,然后,长短期记忆(LSTM)架构用于跨时间步解释特征。首先对每个手势取100个左右的样本进行训练,然后通过数据增强将样本增加到每个手势200个样本。实验结果表明,该模型能够学习不同持续时间和复杂程度的手势,在88ms内识别出手势,准确率为90.62%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Hand Gesture Recognition for Robot Arm Teaching based on Improved LRCN Model
In this research, we focus on finding a new method of human-robot interaction in industrial environment. A vision-based dynamic hand gestures recognition system has been proposed for robot arm picking task. 8 dynamic hand gestures are captured for this task with a 100fps high speed camera. Based on the LRCN model, we combine the MobileNets (V2) and LSTM for this task, the MobileNets (V2) for extracting the image features and recognize the gestures, then, Long Short-Term Memory (LSTM) architecture for interpreting the features across time steps. Around 100 samples are taken for each gesture for training at first, then, the samples are augmented to 200 samples per gesture by data augmentation. Result shows that the model is able to learn the gestures varying in duration and complexity and gestures can be recognized in 88ms with 90.62% accuracy in the experiment on our hand gesture dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信