用于大规模集成电路芯片测量的高空间分辨率的小型化薄膜磁场探头

N. Ando, N. Masuda, N. Tarnaki, T. Kuriyama, S. Saito, K. Kato, K. Ohashi, M. Saito, M. Yarnaguchi
{"title":"用于大规模集成电路芯片测量的高空间分辨率的小型化薄膜磁场探头","authors":"N. Ando, N. Masuda, N. Tarnaki, T. Kuriyama, S. Saito, K. Kato, K. Ohashi, M. Saito, M. Yarnaguchi","doi":"10.1109/ISEMC.2004.1349815","DOIUrl":null,"url":null,"abstract":"It is important to obtain the absolute value of current flowing through each power line on a large-scale integrated (LSI) circuit by measurement because this current on an LSI chip is regarded as conductive noise. We have developed a thin-film magnetic field probe that has spatial resolution high enough to obtain the absolute value of high-frequency power current on an LSI chip. Spatial resolution was enhanced by miniaturizing the shielded loop coil, the detection part of the probe. The outer size of the new coil is 50/spl times/22 /spl mu/m. In taking measurements with the new probe over a 60 /spl mu/m wide microstrip line used as a device under test (DUT), we obtained a 6 dB decrease point of 40 /spl mu/m, which indicates the spatial resolution of the probe. This value is comparable to the typical width of power lines on an LSI chip, around 50 /spl mu/m and is less than half that of our conventional probes, around 90 /spl mu/m. In measurements with the new probe over an LSI chip, we obtained such a fine magnetic near-field distribution that the magnetic fields generated from the lines on the chip were separated. On-chip decoupling was also confirmed by using the new probe. The new probe enables direct verification of a circuit design for suppressing electromagnetic interference (EMI), while conventional coarse mapping of the magnetic near-field cannot be used to evaluate such conductive noise.","PeriodicalId":378094,"journal":{"name":"2004 International Symposium on Electromagnetic Compatibility (IEEE Cat. No.04CH37559)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Miniaturized thin-film magnetic field probe with high spatial resolution for LSI chip measurement\",\"authors\":\"N. Ando, N. Masuda, N. Tarnaki, T. Kuriyama, S. Saito, K. Kato, K. Ohashi, M. Saito, M. Yarnaguchi\",\"doi\":\"10.1109/ISEMC.2004.1349815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is important to obtain the absolute value of current flowing through each power line on a large-scale integrated (LSI) circuit by measurement because this current on an LSI chip is regarded as conductive noise. We have developed a thin-film magnetic field probe that has spatial resolution high enough to obtain the absolute value of high-frequency power current on an LSI chip. Spatial resolution was enhanced by miniaturizing the shielded loop coil, the detection part of the probe. The outer size of the new coil is 50/spl times/22 /spl mu/m. In taking measurements with the new probe over a 60 /spl mu/m wide microstrip line used as a device under test (DUT), we obtained a 6 dB decrease point of 40 /spl mu/m, which indicates the spatial resolution of the probe. This value is comparable to the typical width of power lines on an LSI chip, around 50 /spl mu/m and is less than half that of our conventional probes, around 90 /spl mu/m. In measurements with the new probe over an LSI chip, we obtained such a fine magnetic near-field distribution that the magnetic fields generated from the lines on the chip were separated. On-chip decoupling was also confirmed by using the new probe. The new probe enables direct verification of a circuit design for suppressing electromagnetic interference (EMI), while conventional coarse mapping of the magnetic near-field cannot be used to evaluate such conductive noise.\",\"PeriodicalId\":378094,\"journal\":{\"name\":\"2004 International Symposium on Electromagnetic Compatibility (IEEE Cat. No.04CH37559)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 International Symposium on Electromagnetic Compatibility (IEEE Cat. No.04CH37559)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISEMC.2004.1349815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Symposium on Electromagnetic Compatibility (IEEE Cat. No.04CH37559)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEMC.2004.1349815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

通过测量获得流过大规模集成电路(LSI)上每条电源线的电流的绝对值是很重要的,因为这种电流在大规模集成电路芯片上被视为导电噪声。我们开发了一种薄膜磁场探针,其空间分辨率足够高,可以在LSI芯片上获得高频功率电流的绝对值。通过将探头的探测部分——屏蔽线圈小型化,提高了空间分辨率。新线圈外径为50/spl倍/22 /spl亩/米。在一根60 /spl mu/m宽的微带线作为被测器件(DUT)上进行测量时,我们获得了40 /spl mu/m的6 dB的衰减点,这表明了探针的空间分辨率。该值与LSI芯片上电力线的典型宽度相当,约为50 /spl mu/m,不到传统探头的一半,约为90 /spl mu/m。在对LSI芯片上的新探针进行测量时,我们获得了如此精细的磁场近场分布,以至于芯片上的线产生的磁场是分开的。芯片上的去耦也通过使用新的探针得到了证实。新探头可以直接验证抑制电磁干扰(EMI)的电路设计,而传统的近磁场粗略映射不能用于评估这种导电噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Miniaturized thin-film magnetic field probe with high spatial resolution for LSI chip measurement
It is important to obtain the absolute value of current flowing through each power line on a large-scale integrated (LSI) circuit by measurement because this current on an LSI chip is regarded as conductive noise. We have developed a thin-film magnetic field probe that has spatial resolution high enough to obtain the absolute value of high-frequency power current on an LSI chip. Spatial resolution was enhanced by miniaturizing the shielded loop coil, the detection part of the probe. The outer size of the new coil is 50/spl times/22 /spl mu/m. In taking measurements with the new probe over a 60 /spl mu/m wide microstrip line used as a device under test (DUT), we obtained a 6 dB decrease point of 40 /spl mu/m, which indicates the spatial resolution of the probe. This value is comparable to the typical width of power lines on an LSI chip, around 50 /spl mu/m and is less than half that of our conventional probes, around 90 /spl mu/m. In measurements with the new probe over an LSI chip, we obtained such a fine magnetic near-field distribution that the magnetic fields generated from the lines on the chip were separated. On-chip decoupling was also confirmed by using the new probe. The new probe enables direct verification of a circuit design for suppressing electromagnetic interference (EMI), while conventional coarse mapping of the magnetic near-field cannot be used to evaluate such conductive noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信