{"title":"漏极偏置下PMOS NBTI降解机理及建模","authors":"Y. Luo, J. Orona, D. Nayak, D. Gitlin","doi":"10.1109/RELPHY.2007.369903","DOIUrl":null,"url":null,"abstract":"A new mechanism for PMOS NBTI (negative biased temperature instability) with drain bias is presented. The turnaround behavior of device degradation is explained. While drain bias reduces gate oxide voltage and causes less NBTI, the channel-hot-hole enhances the NBTI degradation. For the first time, a semi-empirical model is proposed that fits well with the experimental data, including various parameters, such as temperature, voltage, channel length, and drive current.","PeriodicalId":433104,"journal":{"name":"2007 IEEE International Reliability Physics Symposium Proceedings. 45th Annual","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Mechanism and Modeling of PMOS NBTI Degradation with Drain Bias\",\"authors\":\"Y. Luo, J. Orona, D. Nayak, D. Gitlin\",\"doi\":\"10.1109/RELPHY.2007.369903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new mechanism for PMOS NBTI (negative biased temperature instability) with drain bias is presented. The turnaround behavior of device degradation is explained. While drain bias reduces gate oxide voltage and causes less NBTI, the channel-hot-hole enhances the NBTI degradation. For the first time, a semi-empirical model is proposed that fits well with the experimental data, including various parameters, such as temperature, voltage, channel length, and drive current.\",\"PeriodicalId\":433104,\"journal\":{\"name\":\"2007 IEEE International Reliability Physics Symposium Proceedings. 45th Annual\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Reliability Physics Symposium Proceedings. 45th Annual\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RELPHY.2007.369903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Reliability Physics Symposium Proceedings. 45th Annual","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RELPHY.2007.369903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mechanism and Modeling of PMOS NBTI Degradation with Drain Bias
A new mechanism for PMOS NBTI (negative biased temperature instability) with drain bias is presented. The turnaround behavior of device degradation is explained. While drain bias reduces gate oxide voltage and causes less NBTI, the channel-hot-hole enhances the NBTI degradation. For the first time, a semi-empirical model is proposed that fits well with the experimental data, including various parameters, such as temperature, voltage, channel length, and drive current.