顺序电路的伪穷举检验

S. Hellebrand, H. Wunderlich
{"title":"顺序电路的伪穷举检验","authors":"S. Hellebrand, H. Wunderlich","doi":"10.1109/TEST.1989.82273","DOIUrl":null,"url":null,"abstract":"The concept of a pseudoexhaustive test for sequential circuits is introduced. Instead of test sets one applies pseudoexhaustive test sequences of a limited length, which provides well-known benefits as far as fault coverage, self-test capability, and simplicity of test generation are concerned. Some flip flops and latches are integrated into an incomplete scan path, such that each possible state of the circuit is reachable within a few steps. Some more flip flops and some new segmentation cells are added to the partial scan path in order to make a pseudoexhaustive test feasible. Algorithms for placing these devices automatically are presented. Also it is shown how to transform a pseudoexhaustive test set into a pseudoexhaustive test sequence of a similar size. The analyzed examples show that a conventional complete scan path without additional testability features requires more hardware overhead than the proposed test strategy, which retains all the known benefits of a pseudoexhaustive test.<<ETX>>","PeriodicalId":264111,"journal":{"name":"Proceedings. 'Meeting the Tests of Time'., International Test Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"The pseudoexhaustive test of sequential circuits\",\"authors\":\"S. Hellebrand, H. Wunderlich\",\"doi\":\"10.1109/TEST.1989.82273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of a pseudoexhaustive test for sequential circuits is introduced. Instead of test sets one applies pseudoexhaustive test sequences of a limited length, which provides well-known benefits as far as fault coverage, self-test capability, and simplicity of test generation are concerned. Some flip flops and latches are integrated into an incomplete scan path, such that each possible state of the circuit is reachable within a few steps. Some more flip flops and some new segmentation cells are added to the partial scan path in order to make a pseudoexhaustive test feasible. Algorithms for placing these devices automatically are presented. Also it is shown how to transform a pseudoexhaustive test set into a pseudoexhaustive test sequence of a similar size. The analyzed examples show that a conventional complete scan path without additional testability features requires more hardware overhead than the proposed test strategy, which retains all the known benefits of a pseudoexhaustive test.<<ETX>>\",\"PeriodicalId\":264111,\"journal\":{\"name\":\"Proceedings. 'Meeting the Tests of Time'., International Test Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 'Meeting the Tests of Time'., International Test Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TEST.1989.82273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 'Meeting the Tests of Time'., International Test Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEST.1989.82273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

介绍了时序电路的伪穷举测试的概念。人们可以应用有限长度的伪穷举测试序列来代替测试集,这在故障覆盖、自测能力和测试生成的简单性方面提供了众所周知的好处。一些触发器和锁存器被集成到一个不完整的扫描路径中,这样电路的每个可能状态都可以在几个步骤内到达。为了使伪穷举测试可行,在部分扫描路径中增加了一些触发器和一些新的分割单元。提出了自动放置这些装置的算法。此外,还展示了如何将伪穷举测试集转换为类似大小的伪穷举测试序列。分析的示例表明,没有附加可测试性特性的传统完整扫描路径比所提出的测试策略需要更多的硬件开销,而所提出的测试策略保留了伪穷举测试的所有已知优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The pseudoexhaustive test of sequential circuits
The concept of a pseudoexhaustive test for sequential circuits is introduced. Instead of test sets one applies pseudoexhaustive test sequences of a limited length, which provides well-known benefits as far as fault coverage, self-test capability, and simplicity of test generation are concerned. Some flip flops and latches are integrated into an incomplete scan path, such that each possible state of the circuit is reachable within a few steps. Some more flip flops and some new segmentation cells are added to the partial scan path in order to make a pseudoexhaustive test feasible. Algorithms for placing these devices automatically are presented. Also it is shown how to transform a pseudoexhaustive test set into a pseudoexhaustive test sequence of a similar size. The analyzed examples show that a conventional complete scan path without additional testability features requires more hardware overhead than the proposed test strategy, which retains all the known benefits of a pseudoexhaustive test.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信