用于成年斑马鱼心室和心房的灵活MEA记录

Xiaoxiao Zhang, Joyce Tai, Jungwoo Park, Y. Tai
{"title":"用于成年斑马鱼心室和心房的灵活MEA记录","authors":"Xiaoxiao Zhang, Joyce Tai, Jungwoo Park, Y. Tai","doi":"10.1109/MEMSYS.2014.6765772","DOIUrl":null,"url":null,"abstract":"This paper presents a flexible parylene micro-electrode-array (MEA) that records Electrocardiograms (ECG) from the Zebrafish heart in-vivo, covering both the ventricle and atrium area. ECG is a powerful tool for monitoring the heart activity. While ECG technology for human has been well established, this is not true for zebrafish. Our previous work demonstrated baseline ECG recording from zebrafish using MEMS MEAs [1, 2]. However, due to the body structure and small size of the zebrafish (e.g., the heart is roughly 1mm in size and its atrium is buried deep in the thoracic cavity, Fig.1b.), all zebrafish ECGs to date were only recorded from the ventricular side, making it easy to miss important electrophysiological signals from the atrium. To our knowledge, ECG from the atrial angles in Zebrafish has not yet been demonstrated. This work describes a flexible MEA implant (i.e., specially designed according to zebrafish heart anatomy) that records from both the ventricular and the atrial angles. Furthermore, to demonstrate that this device is useful for heart regeneration monitoring, our work also includes ECG recording before and after laser damage on the ventricle (532nm green light, 32mJ/mm2, 20mJ total). This chosen energy level of laser pulse is first calibrated using ablated heart histology by EthD-1 florescence staining. The post injury ECG data clearly show ST-wave depression, an indication of ventricular abnormal repolarization state. In addition, repeated missing T-wave is observed from the channels recorded from the atrial angles, which indicate abnormalities in atrial physiology. A hypothesis is that since absorption coefficient of 532nm light in body tissue is rather low, the laser beam penetrated deeply in the heart and created damage deep in the atrium as well as the ventricle. The MEA presented here shows potential for an effective tool to study long-term adult zebrafish heart development and regeneration.","PeriodicalId":312056,"journal":{"name":"2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Flexible MEA for adult zebrafish ECG recording covering both ventricle and atrium\",\"authors\":\"Xiaoxiao Zhang, Joyce Tai, Jungwoo Park, Y. Tai\",\"doi\":\"10.1109/MEMSYS.2014.6765772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a flexible parylene micro-electrode-array (MEA) that records Electrocardiograms (ECG) from the Zebrafish heart in-vivo, covering both the ventricle and atrium area. ECG is a powerful tool for monitoring the heart activity. While ECG technology for human has been well established, this is not true for zebrafish. Our previous work demonstrated baseline ECG recording from zebrafish using MEMS MEAs [1, 2]. However, due to the body structure and small size of the zebrafish (e.g., the heart is roughly 1mm in size and its atrium is buried deep in the thoracic cavity, Fig.1b.), all zebrafish ECGs to date were only recorded from the ventricular side, making it easy to miss important electrophysiological signals from the atrium. To our knowledge, ECG from the atrial angles in Zebrafish has not yet been demonstrated. This work describes a flexible MEA implant (i.e., specially designed according to zebrafish heart anatomy) that records from both the ventricular and the atrial angles. Furthermore, to demonstrate that this device is useful for heart regeneration monitoring, our work also includes ECG recording before and after laser damage on the ventricle (532nm green light, 32mJ/mm2, 20mJ total). This chosen energy level of laser pulse is first calibrated using ablated heart histology by EthD-1 florescence staining. The post injury ECG data clearly show ST-wave depression, an indication of ventricular abnormal repolarization state. In addition, repeated missing T-wave is observed from the channels recorded from the atrial angles, which indicate abnormalities in atrial physiology. A hypothesis is that since absorption coefficient of 532nm light in body tissue is rather low, the laser beam penetrated deeply in the heart and created damage deep in the atrium as well as the ventricle. The MEA presented here shows potential for an effective tool to study long-term adult zebrafish heart development and regeneration.\",\"PeriodicalId\":312056,\"journal\":{\"name\":\"2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2014.6765772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2014.6765772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文介绍了一种柔性聚对二甲苯微电极阵列(MEA),它可以记录斑马鱼心脏的活体心电图(ECG),覆盖心室和心房区域。心电图是监测心脏活动的有力工具。虽然人类的心电图技术已经很成熟,但对斑马鱼来说还不是这样。我们之前的工作证明了斑马鱼使用MEMS mea进行基线心电图记录[1,2]。然而,由于斑马鱼的身体结构和体积较小(例如,心脏大小约为1mm,心房深埋在胸腔中,图1b.),迄今为止所有斑马鱼的心电图都只记录了心室侧,这很容易错过来自心房的重要电生理信号。据我们所知,斑马鱼心房角的心电图尚未得到证实。这项工作描述了一种灵活的MEA植入物(即根据斑马鱼心脏解剖结构专门设计的植入物),可以同时记录心室角和心房角。此外,为了证明该装置可用于心脏再生监测,我们的工作还包括心室激光损伤前后的心电图记录(532nm绿光,32mJ/mm2,总计20mJ)。选择的激光脉冲能级首先通过EthD-1荧光染色使用消融的心脏组织学进行校准。损伤后心电图显示st波明显下降,表明心室复极状态异常。此外,从心房角记录的通道中观察到反复缺失的t波,提示心房生理异常。有一种假说认为,由于532nm光在人体组织中的吸收系数较低,激光束穿透心脏深处,在心房和心室深处造成损伤。本文提出的MEA显示了研究成年斑马鱼长期心脏发育和再生的有效工具的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flexible MEA for adult zebrafish ECG recording covering both ventricle and atrium
This paper presents a flexible parylene micro-electrode-array (MEA) that records Electrocardiograms (ECG) from the Zebrafish heart in-vivo, covering both the ventricle and atrium area. ECG is a powerful tool for monitoring the heart activity. While ECG technology for human has been well established, this is not true for zebrafish. Our previous work demonstrated baseline ECG recording from zebrafish using MEMS MEAs [1, 2]. However, due to the body structure and small size of the zebrafish (e.g., the heart is roughly 1mm in size and its atrium is buried deep in the thoracic cavity, Fig.1b.), all zebrafish ECGs to date were only recorded from the ventricular side, making it easy to miss important electrophysiological signals from the atrium. To our knowledge, ECG from the atrial angles in Zebrafish has not yet been demonstrated. This work describes a flexible MEA implant (i.e., specially designed according to zebrafish heart anatomy) that records from both the ventricular and the atrial angles. Furthermore, to demonstrate that this device is useful for heart regeneration monitoring, our work also includes ECG recording before and after laser damage on the ventricle (532nm green light, 32mJ/mm2, 20mJ total). This chosen energy level of laser pulse is first calibrated using ablated heart histology by EthD-1 florescence staining. The post injury ECG data clearly show ST-wave depression, an indication of ventricular abnormal repolarization state. In addition, repeated missing T-wave is observed from the channels recorded from the atrial angles, which indicate abnormalities in atrial physiology. A hypothesis is that since absorption coefficient of 532nm light in body tissue is rather low, the laser beam penetrated deeply in the heart and created damage deep in the atrium as well as the ventricle. The MEA presented here shows potential for an effective tool to study long-term adult zebrafish heart development and regeneration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信