Pouria Zaghari, Sourish S. Sinha, J. Ryu, P. Franzon, D. Hopkins
{"title":"横向导电氮化镓基电源封装的热循环和疲劳寿命分析","authors":"Pouria Zaghari, Sourish S. Sinha, J. Ryu, P. Franzon, D. Hopkins","doi":"10.1109/3DIC57175.2023.10154901","DOIUrl":null,"url":null,"abstract":"Thermal reliability is a critical factor in ensuring the performance and efficiency of GaN-based electronic devices. In this paper, the fatigue life assessment of a laterally conducting GaN power package that uses a two-solder hierarchy of SAC305 and Sn63/Pb37 on a 120μm thick dielectric for device attach was conducted using an FEA. The double-sided package structure also introduced thick Cu as integrated baseplate layers for mechanical mounting into higher packaging levels while providing surfaces for double-sided cooling. The internal structure varied spacer thicknesses for planarization and inclusion of package-integrated decoupling capacitors. The solder materials were simulated by using the Anand viscoplastic constitutive model. Coffin-Manson, Engelmaier, and Solomon empirical strain-based models were utilized to predict the cyclic life of the package. Based on the results, the critical solder joint location was predicted in the Sn63/Pb37 solder layer between the GaN and Cu spacer, with a strain range of 0.02797. The worst-case life prediction for the module was 150 cycles using the Coffin-Manson model.","PeriodicalId":245299,"journal":{"name":"2023 IEEE International 3D Systems Integration Conference (3DIC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Cycling and Fatigue Life Analysis of a Laterally Conducting GaN-based Power Package\",\"authors\":\"Pouria Zaghari, Sourish S. Sinha, J. Ryu, P. Franzon, D. Hopkins\",\"doi\":\"10.1109/3DIC57175.2023.10154901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal reliability is a critical factor in ensuring the performance and efficiency of GaN-based electronic devices. In this paper, the fatigue life assessment of a laterally conducting GaN power package that uses a two-solder hierarchy of SAC305 and Sn63/Pb37 on a 120μm thick dielectric for device attach was conducted using an FEA. The double-sided package structure also introduced thick Cu as integrated baseplate layers for mechanical mounting into higher packaging levels while providing surfaces for double-sided cooling. The internal structure varied spacer thicknesses for planarization and inclusion of package-integrated decoupling capacitors. The solder materials were simulated by using the Anand viscoplastic constitutive model. Coffin-Manson, Engelmaier, and Solomon empirical strain-based models were utilized to predict the cyclic life of the package. Based on the results, the critical solder joint location was predicted in the Sn63/Pb37 solder layer between the GaN and Cu spacer, with a strain range of 0.02797. The worst-case life prediction for the module was 150 cycles using the Coffin-Manson model.\",\"PeriodicalId\":245299,\"journal\":{\"name\":\"2023 IEEE International 3D Systems Integration Conference (3DIC)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International 3D Systems Integration Conference (3DIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DIC57175.2023.10154901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International 3D Systems Integration Conference (3DIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DIC57175.2023.10154901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal Cycling and Fatigue Life Analysis of a Laterally Conducting GaN-based Power Package
Thermal reliability is a critical factor in ensuring the performance and efficiency of GaN-based electronic devices. In this paper, the fatigue life assessment of a laterally conducting GaN power package that uses a two-solder hierarchy of SAC305 and Sn63/Pb37 on a 120μm thick dielectric for device attach was conducted using an FEA. The double-sided package structure also introduced thick Cu as integrated baseplate layers for mechanical mounting into higher packaging levels while providing surfaces for double-sided cooling. The internal structure varied spacer thicknesses for planarization and inclusion of package-integrated decoupling capacitors. The solder materials were simulated by using the Anand viscoplastic constitutive model. Coffin-Manson, Engelmaier, and Solomon empirical strain-based models were utilized to predict the cyclic life of the package. Based on the results, the critical solder joint location was predicted in the Sn63/Pb37 solder layer between the GaN and Cu spacer, with a strain range of 0.02797. The worst-case life prediction for the module was 150 cycles using the Coffin-Manson model.