Shuvo Roy, Anna Dubnisheva, Abigail N. Eldridge, A. Fleischman, Kenneth G. Goldman, H. Humes, A. Zydney, W. Fissell
{"title":"硅纳米孔膜技术用于植入式人工肾","authors":"Shuvo Roy, Anna Dubnisheva, Abigail N. Eldridge, A. Fleischman, Kenneth G. Goldman, H. Humes, A. Zydney, W. Fissell","doi":"10.1109/SENSOR.2009.5285603","DOIUrl":null,"url":null,"abstract":"High performance silicon nanoporous membranes have been developed to investigate the feasibility of an implantable bioartificial kidney. The nanoscale pore size is defined by the thickness of a sacrificial layer of silicon dioxide (SiO2), which is grown by thermal oxidation down to 5 nm with 1% variation. Standardized test protocols to examine biocompatibility revealed that silicon and related MEMS materials did not exhibit any evidence of cytotoxicity or hemolysis. Surface modification with polyethylene glycol (PEG) monolayers reduced adsorption of bovine serum albumin (BSA) onto MEMS surfaces to ∼4% of positive control. PEG-modified membranes exhibited size-dependent rejection of Ficoll 70, a spherical probe solute, dissolved in bovine whole blood. Prolonged hemofiltration revealed constant membrane flux and consistent molecular selectivity for ≫72 hours.","PeriodicalId":247826,"journal":{"name":"TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Silicon nanopore membrane technology for an implantable artificial kidney\",\"authors\":\"Shuvo Roy, Anna Dubnisheva, Abigail N. Eldridge, A. Fleischman, Kenneth G. Goldman, H. Humes, A. Zydney, W. Fissell\",\"doi\":\"10.1109/SENSOR.2009.5285603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High performance silicon nanoporous membranes have been developed to investigate the feasibility of an implantable bioartificial kidney. The nanoscale pore size is defined by the thickness of a sacrificial layer of silicon dioxide (SiO2), which is grown by thermal oxidation down to 5 nm with 1% variation. Standardized test protocols to examine biocompatibility revealed that silicon and related MEMS materials did not exhibit any evidence of cytotoxicity or hemolysis. Surface modification with polyethylene glycol (PEG) monolayers reduced adsorption of bovine serum albumin (BSA) onto MEMS surfaces to ∼4% of positive control. PEG-modified membranes exhibited size-dependent rejection of Ficoll 70, a spherical probe solute, dissolved in bovine whole blood. Prolonged hemofiltration revealed constant membrane flux and consistent molecular selectivity for ≫72 hours.\",\"PeriodicalId\":247826,\"journal\":{\"name\":\"TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSOR.2009.5285603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSOR.2009.5285603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Silicon nanopore membrane technology for an implantable artificial kidney
High performance silicon nanoporous membranes have been developed to investigate the feasibility of an implantable bioartificial kidney. The nanoscale pore size is defined by the thickness of a sacrificial layer of silicon dioxide (SiO2), which is grown by thermal oxidation down to 5 nm with 1% variation. Standardized test protocols to examine biocompatibility revealed that silicon and related MEMS materials did not exhibit any evidence of cytotoxicity or hemolysis. Surface modification with polyethylene glycol (PEG) monolayers reduced adsorption of bovine serum albumin (BSA) onto MEMS surfaces to ∼4% of positive control. PEG-modified membranes exhibited size-dependent rejection of Ficoll 70, a spherical probe solute, dissolved in bovine whole blood. Prolonged hemofiltration revealed constant membrane flux and consistent molecular selectivity for ≫72 hours.