第一,相关平稳信号的返回时间概率

L. Palatella, C. Pennetta
{"title":"第一,相关平稳信号的返回时间概率","authors":"L. Palatella, C. Pennetta","doi":"10.1109/ICNF.2011.5994296","DOIUrl":null,"url":null,"abstract":"We study the distribution of first return times at a given level L in stationary correlated signals. Our approach makes use of the relation between the characteristic function of the first return probability density function (PDF) and the occupation probability of the state L. In this work we consider a discrete in time and space Ornstein-Uhlenbeck (OU) process with exponential decaying correlation function and then, by a subordination approach, we treat the case of a process with power-law tail correlation function and diverging correlation time. In the first case, by inverting the Laplace transforms we write down an exact analytical expression for the first return time PDF as a function of the level L, while in the second case we obtain the expressions for the first two asymptotic behaviors. In both cases no simple form of the return time statistics like stretched-exponential is obtained.","PeriodicalId":137085,"journal":{"name":"2011 21st International Conference on Noise and Fluctuations","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First return time probability in correlated stationary signals\",\"authors\":\"L. Palatella, C. Pennetta\",\"doi\":\"10.1109/ICNF.2011.5994296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the distribution of first return times at a given level L in stationary correlated signals. Our approach makes use of the relation between the characteristic function of the first return probability density function (PDF) and the occupation probability of the state L. In this work we consider a discrete in time and space Ornstein-Uhlenbeck (OU) process with exponential decaying correlation function and then, by a subordination approach, we treat the case of a process with power-law tail correlation function and diverging correlation time. In the first case, by inverting the Laplace transforms we write down an exact analytical expression for the first return time PDF as a function of the level L, while in the second case we obtain the expressions for the first two asymptotic behaviors. In both cases no simple form of the return time statistics like stretched-exponential is obtained.\",\"PeriodicalId\":137085,\"journal\":{\"name\":\"2011 21st International Conference on Noise and Fluctuations\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 21st International Conference on Noise and Fluctuations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNF.2011.5994296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 21st International Conference on Noise and Fluctuations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNF.2011.5994296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了平稳相关信号在给定水平L下的首次返回时间分布。该方法利用了第一次返回概率密度函数(PDF)的特征函数与状态l的占用概率之间的关系。本文考虑了一个具有指数衰减相关函数的时空离散的Ornstein-Uhlenbeck (OU)过程,然后采用从属方法处理了一个具有幂律尾相关函数和发散相关时间的过程。在第一种情况下,通过拉普拉斯逆变换,我们写出了第一个返回时间PDF作为水平L的函数的精确解析表达式,而在第二种情况下,我们得到了前两个渐近行为的表达式。在这两种情况下,没有简单形式的返回时间统计数据,如拉伸指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First return time probability in correlated stationary signals
We study the distribution of first return times at a given level L in stationary correlated signals. Our approach makes use of the relation between the characteristic function of the first return probability density function (PDF) and the occupation probability of the state L. In this work we consider a discrete in time and space Ornstein-Uhlenbeck (OU) process with exponential decaying correlation function and then, by a subordination approach, we treat the case of a process with power-law tail correlation function and diverging correlation time. In the first case, by inverting the Laplace transforms we write down an exact analytical expression for the first return time PDF as a function of the level L, while in the second case we obtain the expressions for the first two asymptotic behaviors. In both cases no simple form of the return time statistics like stretched-exponential is obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信