J. Ducrée, H. Gruhler, N. Hey, M. Muller, S. Békési, M. Freygang, H. Sandmaiser, R. Zengerle
{"title":"一种制造微阵列的新方法","authors":"J. Ducrée, H. Gruhler, N. Hey, M. Muller, S. Békési, M. Freygang, H. Sandmaiser, R. Zengerle","doi":"10.1109/MEMSYS.2000.838536","DOIUrl":null,"url":null,"abstract":"This article outlines the new non-contact TOPSPOT method for printing microarrays in a highly parallelized fashion. It is based on a micromachined print head incorporating a central microarray of presently up to 96 vertical nozzles on the output side. Droplets featuring volumes down to 1nl aligned in a 500 /spl mu/m grid are simultaneously ejected by applying a steep air pressure ramp to the open upper side of the liquid. Each of these nozzles is connected to a distinct fluidic reservoir constituting the interface to the macro world. To allow an automated replenishing of the chip, the alignment of the reservoirs is amenable for liquid handling via standard pipetting robots. Depending on the design of the print head, a maximum of 20 /spl mu/l can be stored thus allowing one to dispend about 20.000 droplets of equal quality in a row. Besides its suitability for a robust biochip manufacturing facility in the laboratory, the print head is also well-integrable in a high-throughput production plant. These versions are scheduled to become commercially available in 2000.","PeriodicalId":251857,"journal":{"name":"Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"TOPSPOT-a new method for the fabrication of microarrays\",\"authors\":\"J. Ducrée, H. Gruhler, N. Hey, M. Muller, S. Békési, M. Freygang, H. Sandmaiser, R. Zengerle\",\"doi\":\"10.1109/MEMSYS.2000.838536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article outlines the new non-contact TOPSPOT method for printing microarrays in a highly parallelized fashion. It is based on a micromachined print head incorporating a central microarray of presently up to 96 vertical nozzles on the output side. Droplets featuring volumes down to 1nl aligned in a 500 /spl mu/m grid are simultaneously ejected by applying a steep air pressure ramp to the open upper side of the liquid. Each of these nozzles is connected to a distinct fluidic reservoir constituting the interface to the macro world. To allow an automated replenishing of the chip, the alignment of the reservoirs is amenable for liquid handling via standard pipetting robots. Depending on the design of the print head, a maximum of 20 /spl mu/l can be stored thus allowing one to dispend about 20.000 droplets of equal quality in a row. Besides its suitability for a robust biochip manufacturing facility in the laboratory, the print head is also well-integrable in a high-throughput production plant. These versions are scheduled to become commercially available in 2000.\",\"PeriodicalId\":251857,\"journal\":{\"name\":\"Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2000.838536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2000.838536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
摘要
本文概述了一种新的非接触式TOPSPOT方法,用于以高度并行化的方式打印微阵列。它是基于一个微机械打印头结合中央微阵列目前多达96个垂直喷嘴在输出侧。液滴的体积低至1nl,排列在500 /spl / mu/m的网格中,同时通过在液体的开放上方施加陡峭的空气压力坡道喷射出来。这些喷嘴中的每一个都连接到一个不同的储液器,构成了与宏观世界的界面。为了实现芯片的自动补充,储层的对齐可以通过标准移液机器人进行液体处理。根据打印头的设计,最多可存储20 μ l / μ l,从而允许连续分发约20,000个相同质量的液滴。除了适合实验室中强大的生物芯片制造设施外,打印头也可以很好地集成到高通量生产工厂中。这些版本计划在2000年投入商用。
TOPSPOT-a new method for the fabrication of microarrays
This article outlines the new non-contact TOPSPOT method for printing microarrays in a highly parallelized fashion. It is based on a micromachined print head incorporating a central microarray of presently up to 96 vertical nozzles on the output side. Droplets featuring volumes down to 1nl aligned in a 500 /spl mu/m grid are simultaneously ejected by applying a steep air pressure ramp to the open upper side of the liquid. Each of these nozzles is connected to a distinct fluidic reservoir constituting the interface to the macro world. To allow an automated replenishing of the chip, the alignment of the reservoirs is amenable for liquid handling via standard pipetting robots. Depending on the design of the print head, a maximum of 20 /spl mu/l can be stored thus allowing one to dispend about 20.000 droplets of equal quality in a row. Besides its suitability for a robust biochip manufacturing facility in the laboratory, the print head is also well-integrable in a high-throughput production plant. These versions are scheduled to become commercially available in 2000.