一种多人姿态估计的注意模块

Daxing Chen, Xinghao Song, Shixi Fan, Hongpeng Wang
{"title":"一种多人姿态估计的注意模块","authors":"Daxing Chen, Xinghao Song, Shixi Fan, Hongpeng Wang","doi":"10.1109/ROBIO49542.2019.8961623","DOIUrl":null,"url":null,"abstract":"In the top-down approaches of multi-person pose estimation, a human detector is adopted first to generate a set of human bounding boxes, then crop these human body and perform a single-person pose estimation model to get the final result. However, some body part of another person on the cropped image will interfere the single-person pose estimation model leading to an inaccuracy result. In order to model the relationship between adjacent keypoints effectively to alleviate this problem, we propose and attention module that could let the model get global receptive field at the shallow layer of the network and pay more attention to the key areas which is more important to pose estimation. Experiment results show that our method achieves 73.9% mAP with 2.4% absolute improvement compared to our baseline on the COCO test-dev dataset.","PeriodicalId":121822,"journal":{"name":"2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"1924 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Attention Module for Multi-Person Pose Estimation\",\"authors\":\"Daxing Chen, Xinghao Song, Shixi Fan, Hongpeng Wang\",\"doi\":\"10.1109/ROBIO49542.2019.8961623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the top-down approaches of multi-person pose estimation, a human detector is adopted first to generate a set of human bounding boxes, then crop these human body and perform a single-person pose estimation model to get the final result. However, some body part of another person on the cropped image will interfere the single-person pose estimation model leading to an inaccuracy result. In order to model the relationship between adjacent keypoints effectively to alleviate this problem, we propose and attention module that could let the model get global receptive field at the shallow layer of the network and pay more attention to the key areas which is more important to pose estimation. Experiment results show that our method achieves 73.9% mAP with 2.4% absolute improvement compared to our baseline on the COCO test-dev dataset.\",\"PeriodicalId\":121822,\"journal\":{\"name\":\"2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"1924 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO49542.2019.8961623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO49542.2019.8961623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在自顶向下的多人姿态估计方法中,首先使用人体检测器生成一组人体边界框,然后裁剪这些人体并执行单人姿态估计模型以获得最终结果。然而,裁剪后的图像上其他人的某些身体部位会干扰单人姿态估计模型,导致结果不准确。为了有效地对相邻关键点之间的关系进行建模以缓解这一问题,我们提出了一个关注模块,该模块可以使模型在网络的浅层处获得全局接受野,并更加关注对姿态估计更重要的关键区域。实验结果表明,与COCO测试开发数据集的基线相比,我们的方法实现了73.9%的mAP,绝对提高了2.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Attention Module for Multi-Person Pose Estimation
In the top-down approaches of multi-person pose estimation, a human detector is adopted first to generate a set of human bounding boxes, then crop these human body and perform a single-person pose estimation model to get the final result. However, some body part of another person on the cropped image will interfere the single-person pose estimation model leading to an inaccuracy result. In order to model the relationship between adjacent keypoints effectively to alleviate this problem, we propose and attention module that could let the model get global receptive field at the shallow layer of the network and pay more attention to the key areas which is more important to pose estimation. Experiment results show that our method achieves 73.9% mAP with 2.4% absolute improvement compared to our baseline on the COCO test-dev dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信