{"title":"利用醛类抑制剂制备钌薄膜的面积选择性原子层沉积","authors":"Han Park, J. Oh, Jeong‐Min Lee, Woo‐Hee Kim","doi":"10.1109/IITC/MAM57687.2023.10154817","DOIUrl":null,"url":null,"abstract":"Recently, area selective atomic layer deposition (AS-ALD) has attached attention for alternative approach of device downscaling in 3D semiconductor fabrication. We reported Ru AS-ALD through vapor-phase adsorption of aldehyde self-assembled monolayers (SAMs). In this study, we investigate Ru ALD process and explored inhibitory efficacy of aldehyde inhibitors on various substrates, including nitride, oxide, and metal surfaces. As a results of chemo-selective adsorption of aldehyde molecules, nitride substrates were selectively passivated, thereby leading to growth retardation of Ru ALD. Finally, through surface functionalization by using aldehyde inhibitors, we achieved Ru AS-ALD on patterned TiN/SiO2 surfaces.","PeriodicalId":241835,"journal":{"name":"2023 IEEE International Interconnect Technology Conference (IITC) and IEEE Materials for Advanced Metallization Conference (MAM)(IITC/MAM)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Area-Selective Atomic Layer Deposition of Ruthenium Thin Films Using Aldehyde Inhibitors\",\"authors\":\"Han Park, J. Oh, Jeong‐Min Lee, Woo‐Hee Kim\",\"doi\":\"10.1109/IITC/MAM57687.2023.10154817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, area selective atomic layer deposition (AS-ALD) has attached attention for alternative approach of device downscaling in 3D semiconductor fabrication. We reported Ru AS-ALD through vapor-phase adsorption of aldehyde self-assembled monolayers (SAMs). In this study, we investigate Ru ALD process and explored inhibitory efficacy of aldehyde inhibitors on various substrates, including nitride, oxide, and metal surfaces. As a results of chemo-selective adsorption of aldehyde molecules, nitride substrates were selectively passivated, thereby leading to growth retardation of Ru ALD. Finally, through surface functionalization by using aldehyde inhibitors, we achieved Ru AS-ALD on patterned TiN/SiO2 surfaces.\",\"PeriodicalId\":241835,\"journal\":{\"name\":\"2023 IEEE International Interconnect Technology Conference (IITC) and IEEE Materials for Advanced Metallization Conference (MAM)(IITC/MAM)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Interconnect Technology Conference (IITC) and IEEE Materials for Advanced Metallization Conference (MAM)(IITC/MAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IITC/MAM57687.2023.10154817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Interconnect Technology Conference (IITC) and IEEE Materials for Advanced Metallization Conference (MAM)(IITC/MAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITC/MAM57687.2023.10154817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Area-Selective Atomic Layer Deposition of Ruthenium Thin Films Using Aldehyde Inhibitors
Recently, area selective atomic layer deposition (AS-ALD) has attached attention for alternative approach of device downscaling in 3D semiconductor fabrication. We reported Ru AS-ALD through vapor-phase adsorption of aldehyde self-assembled monolayers (SAMs). In this study, we investigate Ru ALD process and explored inhibitory efficacy of aldehyde inhibitors on various substrates, including nitride, oxide, and metal surfaces. As a results of chemo-selective adsorption of aldehyde molecules, nitride substrates were selectively passivated, thereby leading to growth retardation of Ru ALD. Finally, through surface functionalization by using aldehyde inhibitors, we achieved Ru AS-ALD on patterned TiN/SiO2 surfaces.