Emad A. Poshtan, S. Rzepka, B. Michel, C. Silber, B. Wunderle
{"title":"循环加载条件下微电子封装双材料界面表征的加速方法","authors":"Emad A. Poshtan, S. Rzepka, B. Michel, C. Silber, B. Wunderle","doi":"10.1109/EUROSIME.2014.6813793","DOIUrl":null,"url":null,"abstract":"In this paper, an accelerated and cost-effective characterization method for bi-material interfaces under cyclic loading using a Miniaturized Cyclic Mixed-mode Bending (MCMB) test setup is presented. The Modified Single Leg Bending (MSLB) samples are acquired directly from production-line Thin Quad Flat Package (TQFP) which provide a mixed-mode I + II loading condition. Under sub-critical cyclic loading, crack was found to occur at the polymer-metal interface. The crack length is measured using three methods: (i) in-situ measurements using microscope (ii) gray scale correlation method (iii) numerical method. The crack growth rate was found to have a power-law dependence on the strain Energy Release Rate (ERR) range. In addition influence of plasma cleaning on interfacial adhesion properties namely, crack initiation and propagation is discussed.","PeriodicalId":359430,"journal":{"name":"2014 15th International Conference on Thermal, Mechanical and Mulit-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An accelerated method for characterization of bi-material interfaces in microelectronic packages under cyclic loading conditions\",\"authors\":\"Emad A. Poshtan, S. Rzepka, B. Michel, C. Silber, B. Wunderle\",\"doi\":\"10.1109/EUROSIME.2014.6813793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an accelerated and cost-effective characterization method for bi-material interfaces under cyclic loading using a Miniaturized Cyclic Mixed-mode Bending (MCMB) test setup is presented. The Modified Single Leg Bending (MSLB) samples are acquired directly from production-line Thin Quad Flat Package (TQFP) which provide a mixed-mode I + II loading condition. Under sub-critical cyclic loading, crack was found to occur at the polymer-metal interface. The crack length is measured using three methods: (i) in-situ measurements using microscope (ii) gray scale correlation method (iii) numerical method. The crack growth rate was found to have a power-law dependence on the strain Energy Release Rate (ERR) range. In addition influence of plasma cleaning on interfacial adhesion properties namely, crack initiation and propagation is discussed.\",\"PeriodicalId\":359430,\"journal\":{\"name\":\"2014 15th International Conference on Thermal, Mechanical and Mulit-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 15th International Conference on Thermal, Mechanical and Mulit-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2014.6813793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 15th International Conference on Thermal, Mechanical and Mulit-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2014.6813793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An accelerated method for characterization of bi-material interfaces in microelectronic packages under cyclic loading conditions
In this paper, an accelerated and cost-effective characterization method for bi-material interfaces under cyclic loading using a Miniaturized Cyclic Mixed-mode Bending (MCMB) test setup is presented. The Modified Single Leg Bending (MSLB) samples are acquired directly from production-line Thin Quad Flat Package (TQFP) which provide a mixed-mode I + II loading condition. Under sub-critical cyclic loading, crack was found to occur at the polymer-metal interface. The crack length is measured using three methods: (i) in-situ measurements using microscope (ii) gray scale correlation method (iii) numerical method. The crack growth rate was found to have a power-law dependence on the strain Energy Release Rate (ERR) range. In addition influence of plasma cleaning on interfacial adhesion properties namely, crack initiation and propagation is discussed.