采用碳纳米管的高灵敏度应变传感器

H. Kawakami, Ken Suzuki, H. Miura
{"title":"采用碳纳米管的高灵敏度应变传感器","authors":"H. Kawakami, Ken Suzuki, H. Miura","doi":"10.1109/EMAP.2012.6507923","DOIUrl":null,"url":null,"abstract":"A new highly sensitive strain sensor has been developed by applying the strain-induced change of the electrical conductivity of multi-walled carbon nanotubes (MWCNTs). The electric conductivity of MWCNTs changes drastically under uni-axial strain because of the drastic change of their electronic band gap. Therefore, the local strain distribution can be detected by measuring the change of the electric resistance of MWCNTs under strain. In order to design a new sensor using MWCNTs, a method for controlling the shape of the MWCNTs was developed by applying a chemical vapor deposition (CVD) technique. It was found that the shape of the grown MWCNTs can be controlled by changing the average thickness of the catalyst layer and the growth temperature. The electrical resistance of the grown MWCNT bundle changed almost linearly with the applied uniaxial compressive strain, and obtained maximum strain sensitivity was about 10%/1000-ustrain (gauge factor: 100). A two-dimensional strain sensor, which consisted of area-arrayed fine bundles of MWCNTs, was developed by using MEMS technology. Under the application of compressive strain, the electric resistance was confirmed to increase almost linearly with the applied strain.","PeriodicalId":182576,"journal":{"name":"2012 14th International Conference on Electronic Materials and Packaging (EMAP)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Highly sensitive strain sensor using carbon nanotube\",\"authors\":\"H. Kawakami, Ken Suzuki, H. Miura\",\"doi\":\"10.1109/EMAP.2012.6507923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new highly sensitive strain sensor has been developed by applying the strain-induced change of the electrical conductivity of multi-walled carbon nanotubes (MWCNTs). The electric conductivity of MWCNTs changes drastically under uni-axial strain because of the drastic change of their electronic band gap. Therefore, the local strain distribution can be detected by measuring the change of the electric resistance of MWCNTs under strain. In order to design a new sensor using MWCNTs, a method for controlling the shape of the MWCNTs was developed by applying a chemical vapor deposition (CVD) technique. It was found that the shape of the grown MWCNTs can be controlled by changing the average thickness of the catalyst layer and the growth temperature. The electrical resistance of the grown MWCNT bundle changed almost linearly with the applied uniaxial compressive strain, and obtained maximum strain sensitivity was about 10%/1000-ustrain (gauge factor: 100). A two-dimensional strain sensor, which consisted of area-arrayed fine bundles of MWCNTs, was developed by using MEMS technology. Under the application of compressive strain, the electric resistance was confirmed to increase almost linearly with the applied strain.\",\"PeriodicalId\":182576,\"journal\":{\"name\":\"2012 14th International Conference on Electronic Materials and Packaging (EMAP)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 14th International Conference on Electronic Materials and Packaging (EMAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMAP.2012.6507923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 14th International Conference on Electronic Materials and Packaging (EMAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMAP.2012.6507923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用应变诱导的多壁碳纳米管(MWCNTs)电导率变化,研制了一种新型的高灵敏度应变传感器。单轴应变下MWCNTs的电导率发生了剧烈变化,这是由于其电子带隙发生了剧烈变化。因此,可以通过测量MWCNTs在应变作用下的电阻变化来检测局部应变分布。为了设计一种新型的MWCNTs传感器,采用化学气相沉积(CVD)技术来控制MWCNTs的形状。研究发现,通过改变催化剂层的平均厚度和生长温度,可以控制生长的MWCNTs的形状。生长的MWCNT管束电阻随施加的单轴压缩应变几乎呈线性变化,获得的最大应变灵敏度约为10%/1000- strain (gauge factor: 100)。利用MEMS技术,研制了一种由纳米碳纳米管细束组成的二维应变传感器。在施加压缩应变的情况下,电阻几乎随施加应变的增加而线性增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly sensitive strain sensor using carbon nanotube
A new highly sensitive strain sensor has been developed by applying the strain-induced change of the electrical conductivity of multi-walled carbon nanotubes (MWCNTs). The electric conductivity of MWCNTs changes drastically under uni-axial strain because of the drastic change of their electronic band gap. Therefore, the local strain distribution can be detected by measuring the change of the electric resistance of MWCNTs under strain. In order to design a new sensor using MWCNTs, a method for controlling the shape of the MWCNTs was developed by applying a chemical vapor deposition (CVD) technique. It was found that the shape of the grown MWCNTs can be controlled by changing the average thickness of the catalyst layer and the growth temperature. The electrical resistance of the grown MWCNT bundle changed almost linearly with the applied uniaxial compressive strain, and obtained maximum strain sensitivity was about 10%/1000-ustrain (gauge factor: 100). A two-dimensional strain sensor, which consisted of area-arrayed fine bundles of MWCNTs, was developed by using MEMS technology. Under the application of compressive strain, the electric resistance was confirmed to increase almost linearly with the applied strain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信