可重构扫描网络的可测试性增强重构

N. Lylina, Chih-Hao Wang, H. Wunderlich
{"title":"可重构扫描网络的可测试性增强重构","authors":"N. Lylina, Chih-Hao Wang, H. Wunderlich","doi":"10.1109/ITC50571.2021.00009","DOIUrl":null,"url":null,"abstract":"Reconfigurable Scan Networks (RSNs) have to be tested before they can be used for post-silicon validation, diagnosis or online reliability management. Even a single stuck-at fault in the switch logic of an RSN can corrupt the scan paths and make instruments inaccessible. Testing the switch logic of an RSN is a complex sequential test problem. The existing test schemes for RSNs rely on the assumption that a fault in the switch logic will be detected by the altered length of the erroneously activated scan path. However, often this assumption does not hold and faults in the switch logic remain undetected.In this paper, an automated testability-enhancing resynthesis is presented. First, the testability of the initial RSN is accurately analyzed. If any single fault in the switch logic is undetectable by the altered path length, a small number of scan cells is inserted into the RSN. The presented scheme is applicable to arbitrary RSN designs and is compliant with state-of-the-art test methods and the applicable standards. The experimental results show the efficacy, the efficiency and the scalability of the approach.","PeriodicalId":147006,"journal":{"name":"2021 IEEE International Test Conference (ITC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Testability-Enhancing Resynthesis of Reconfigurable Scan Networks\",\"authors\":\"N. Lylina, Chih-Hao Wang, H. Wunderlich\",\"doi\":\"10.1109/ITC50571.2021.00009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reconfigurable Scan Networks (RSNs) have to be tested before they can be used for post-silicon validation, diagnosis or online reliability management. Even a single stuck-at fault in the switch logic of an RSN can corrupt the scan paths and make instruments inaccessible. Testing the switch logic of an RSN is a complex sequential test problem. The existing test schemes for RSNs rely on the assumption that a fault in the switch logic will be detected by the altered length of the erroneously activated scan path. However, often this assumption does not hold and faults in the switch logic remain undetected.In this paper, an automated testability-enhancing resynthesis is presented. First, the testability of the initial RSN is accurately analyzed. If any single fault in the switch logic is undetectable by the altered path length, a small number of scan cells is inserted into the RSN. The presented scheme is applicable to arbitrary RSN designs and is compliant with state-of-the-art test methods and the applicable standards. The experimental results show the efficacy, the efficiency and the scalability of the approach.\",\"PeriodicalId\":147006,\"journal\":{\"name\":\"2021 IEEE International Test Conference (ITC)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Test Conference (ITC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITC50571.2021.00009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Test Conference (ITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC50571.2021.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

可重构扫描网络(rsn)在用于硅后验证、诊断或在线可靠性管理之前必须进行测试。即使是RSN的开关逻辑中的单个卡在故障也会破坏扫描路径并使仪器无法访问。测试RSN的开关逻辑是一个复杂的顺序测试问题。现有的rsn测试方案依赖于这样一个假设,即开关逻辑中的故障将通过错误激活的扫描路径的改变长度来检测。然而,通常这种假设并不成立,并且开关逻辑中的故障仍然未被检测到。本文提出了一种增强测试性的自动合成方法。首先,准确分析了初始RSN的可测试性。如果通过改变的路径长度无法检测到开关逻辑中的任何单个故障,则将少量扫描单元插入RSN。该方案适用于任意RSN设计,并符合最先进的测试方法和适用标准。实验结果表明了该方法的有效性、高效性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Testability-Enhancing Resynthesis of Reconfigurable Scan Networks
Reconfigurable Scan Networks (RSNs) have to be tested before they can be used for post-silicon validation, diagnosis or online reliability management. Even a single stuck-at fault in the switch logic of an RSN can corrupt the scan paths and make instruments inaccessible. Testing the switch logic of an RSN is a complex sequential test problem. The existing test schemes for RSNs rely on the assumption that a fault in the switch logic will be detected by the altered length of the erroneously activated scan path. However, often this assumption does not hold and faults in the switch logic remain undetected.In this paper, an automated testability-enhancing resynthesis is presented. First, the testability of the initial RSN is accurately analyzed. If any single fault in the switch logic is undetectable by the altered path length, a small number of scan cells is inserted into the RSN. The presented scheme is applicable to arbitrary RSN designs and is compliant with state-of-the-art test methods and the applicable standards. The experimental results show the efficacy, the efficiency and the scalability of the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信