{"title":"基于推脱的动态行走器不稳定极限环的可逆切换曲面镇定","authors":"Rana Danesh, A. Safa, M. Naraghi","doi":"10.1109/ICRoM48714.2019.9071813","DOIUrl":null,"url":null,"abstract":"By employing the concept of “Reversible Switching Surfaces” (RSS), we demonstrate that it is possible to stabilize unstable periodic orbits of a push-off based dynamic walker. The concept is implemented by a simple event-based control which kinematically controls the foot during the swing phase to adjust the heel-strike. The feedback controller is designed based on the theory of Virtual Holonomic Constraints (VHC). Simulation results demonstrate, there exists a broad range of VHC which satisfies stable dynamic walking.","PeriodicalId":191113,"journal":{"name":"2019 7th International Conference on Robotics and Mechatronics (ICRoM)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilization of Unstable Limit Cycles in a Push-off Based Dynamic Walker by Reversible Switching Surfaces\",\"authors\":\"Rana Danesh, A. Safa, M. Naraghi\",\"doi\":\"10.1109/ICRoM48714.2019.9071813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By employing the concept of “Reversible Switching Surfaces” (RSS), we demonstrate that it is possible to stabilize unstable periodic orbits of a push-off based dynamic walker. The concept is implemented by a simple event-based control which kinematically controls the foot during the swing phase to adjust the heel-strike. The feedback controller is designed based on the theory of Virtual Holonomic Constraints (VHC). Simulation results demonstrate, there exists a broad range of VHC which satisfies stable dynamic walking.\",\"PeriodicalId\":191113,\"journal\":{\"name\":\"2019 7th International Conference on Robotics and Mechatronics (ICRoM)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 7th International Conference on Robotics and Mechatronics (ICRoM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRoM48714.2019.9071813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Conference on Robotics and Mechatronics (ICRoM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRoM48714.2019.9071813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stabilization of Unstable Limit Cycles in a Push-off Based Dynamic Walker by Reversible Switching Surfaces
By employing the concept of “Reversible Switching Surfaces” (RSS), we demonstrate that it is possible to stabilize unstable periodic orbits of a push-off based dynamic walker. The concept is implemented by a simple event-based control which kinematically controls the foot during the swing phase to adjust the heel-strike. The feedback controller is designed based on the theory of Virtual Holonomic Constraints (VHC). Simulation results demonstrate, there exists a broad range of VHC which satisfies stable dynamic walking.