{"title":"异质集成焊接材料的演变","authors":"K. Thum, S. Lim","doi":"10.1109/EPTC47984.2019.9026658","DOIUrl":null,"url":null,"abstract":"Heterogeneous integration is the solution for advanced packaging by packing more dies or components into smaller footprints. This entire packaging evolution requires multiple technology breakthroughs in different aspects such as substrate design, interconnect methods, and materials. This paper will outline the trends in various soldering materials technology which cater to heterogeneous integration such as solder pastes, flip-chip fluxes, and ball-attach fluxes.","PeriodicalId":244618,"journal":{"name":"2019 IEEE 21st Electronics Packaging Technology Conference (EPTC)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Soldering Material Evolution for Heterogeneous Integration\",\"authors\":\"K. Thum, S. Lim\",\"doi\":\"10.1109/EPTC47984.2019.9026658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heterogeneous integration is the solution for advanced packaging by packing more dies or components into smaller footprints. This entire packaging evolution requires multiple technology breakthroughs in different aspects such as substrate design, interconnect methods, and materials. This paper will outline the trends in various soldering materials technology which cater to heterogeneous integration such as solder pastes, flip-chip fluxes, and ball-attach fluxes.\",\"PeriodicalId\":244618,\"journal\":{\"name\":\"2019 IEEE 21st Electronics Packaging Technology Conference (EPTC)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 21st Electronics Packaging Technology Conference (EPTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPTC47984.2019.9026658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 21st Electronics Packaging Technology Conference (EPTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPTC47984.2019.9026658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Soldering Material Evolution for Heterogeneous Integration
Heterogeneous integration is the solution for advanced packaging by packing more dies or components into smaller footprints. This entire packaging evolution requires multiple technology breakthroughs in different aspects such as substrate design, interconnect methods, and materials. This paper will outline the trends in various soldering materials technology which cater to heterogeneous integration such as solder pastes, flip-chip fluxes, and ball-attach fluxes.