{"title":"汽车,计算机,便携式和植入式医疗设备应用的热循环指南","authors":"R. Raghunathan, R. Pucha, S. Sitaraman","doi":"10.1115/imece2000-2246","DOIUrl":null,"url":null,"abstract":"\n The objective of this work is to develop qualification guidelines for Flip-Chip on Board (FCOB) and Flip Chip Chip-Scale Packages (FCCSP) used in implantable medical devices, automotive applications, computer applications and portables, taking into consideration the thermal history associated with the field conditions. The accumulated equivalent inelastic strain per cycle and the maximum strain energy density have been used as damage parameters to correlate solder fatigue damage during field use and thermal cycling. The component assembly process mechanics, the time and temperature-dependent material behavior, and the critical geometric features of the assembly have been taken into consideration for developing the comprehensive virtual qualification methodology.","PeriodicalId":179094,"journal":{"name":"Packaging of Electronic and Photonic Devices","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Thermal Cycling Guidelines for Automotive, Computer, Portable, and Implantable Medical Device Applications\",\"authors\":\"R. Raghunathan, R. Pucha, S. Sitaraman\",\"doi\":\"10.1115/imece2000-2246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The objective of this work is to develop qualification guidelines for Flip-Chip on Board (FCOB) and Flip Chip Chip-Scale Packages (FCCSP) used in implantable medical devices, automotive applications, computer applications and portables, taking into consideration the thermal history associated with the field conditions. The accumulated equivalent inelastic strain per cycle and the maximum strain energy density have been used as damage parameters to correlate solder fatigue damage during field use and thermal cycling. The component assembly process mechanics, the time and temperature-dependent material behavior, and the critical geometric features of the assembly have been taken into consideration for developing the comprehensive virtual qualification methodology.\",\"PeriodicalId\":179094,\"journal\":{\"name\":\"Packaging of Electronic and Photonic Devices\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Packaging of Electronic and Photonic Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2000-2246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Packaging of Electronic and Photonic Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-2246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal Cycling Guidelines for Automotive, Computer, Portable, and Implantable Medical Device Applications
The objective of this work is to develop qualification guidelines for Flip-Chip on Board (FCOB) and Flip Chip Chip-Scale Packages (FCCSP) used in implantable medical devices, automotive applications, computer applications and portables, taking into consideration the thermal history associated with the field conditions. The accumulated equivalent inelastic strain per cycle and the maximum strain energy density have been used as damage parameters to correlate solder fatigue damage during field use and thermal cycling. The component assembly process mechanics, the time and temperature-dependent material behavior, and the critical geometric features of the assembly have been taken into consideration for developing the comprehensive virtual qualification methodology.