2.5D异构集成电路先进单片散热的电气和性能优势

Sreejith Kochupurackal Rajan, Ankit Kaul, G. May, M. Bakir
{"title":"2.5D异构集成电路先进单片散热的电气和性能优势","authors":"Sreejith Kochupurackal Rajan, Ankit Kaul, G. May, M. Bakir","doi":"10.1109/3dic52383.2021.9687618","DOIUrl":null,"url":null,"abstract":"The rising prominence of heterogeneous integration, coupled with increase in device power, presents unique thermal challenges. Past work has demonstrated the benefits of mono-lithic microfluidic cooling for mitigating these in 2.5D ICs. In this paper, we evaluate the electrical performance benefits of this technology using finite element modeling and experimental demonstration on functional silicon. Ansys models show up to 23.3 × lower thermal coupling between the core chiplets in a CPU with microfluidic cooling compared to traditional air-cooled configurations. Finally, we demonstrate a micropin-fin heatsink etched on the backside of five chiplets in a 2.5D FPGA package and capped with 3D printed manifolds for fluid delivery. A 50.5 % increase in sustained power dissipation for similar die temperatures was achieved with the monolithic heatsink using a 52.5 °C DI water inlet, when compared to the stock cold-plate.","PeriodicalId":120750,"journal":{"name":"2021 IEEE International 3D Systems Integration Conference (3DIC)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrical and Performance Benefits of Advanced Monolithic Cooling for 2.5D Heterogeneous ICs\",\"authors\":\"Sreejith Kochupurackal Rajan, Ankit Kaul, G. May, M. Bakir\",\"doi\":\"10.1109/3dic52383.2021.9687618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rising prominence of heterogeneous integration, coupled with increase in device power, presents unique thermal challenges. Past work has demonstrated the benefits of mono-lithic microfluidic cooling for mitigating these in 2.5D ICs. In this paper, we evaluate the electrical performance benefits of this technology using finite element modeling and experimental demonstration on functional silicon. Ansys models show up to 23.3 × lower thermal coupling between the core chiplets in a CPU with microfluidic cooling compared to traditional air-cooled configurations. Finally, we demonstrate a micropin-fin heatsink etched on the backside of five chiplets in a 2.5D FPGA package and capped with 3D printed manifolds for fluid delivery. A 50.5 % increase in sustained power dissipation for similar die temperatures was achieved with the monolithic heatsink using a 52.5 °C DI water inlet, when compared to the stock cold-plate.\",\"PeriodicalId\":120750,\"journal\":{\"name\":\"2021 IEEE International 3D Systems Integration Conference (3DIC)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International 3D Systems Integration Conference (3DIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3dic52383.2021.9687618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International 3D Systems Integration Conference (3DIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3dic52383.2021.9687618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

异质集成的日益突出,加上器件功率的增加,提出了独特的热挑战。过去的工作已经证明了单片微流控冷却在2.5D集成电路中缓解这些问题的好处。在本文中,我们使用有限元建模和在功能硅上的实验演示来评估该技术的电气性能优势。Ansys模型显示,与传统的风冷配置相比,微流体冷却CPU的核心芯片之间的热耦合降低了23.3倍。最后,我们展示了一个蚀刻在2.5D FPGA封装中五个芯片背面的微针鳍散热器,并配有3D打印歧管,用于流体输送。与库存冷板相比,使用52.5°C DI水入口的单片散热器在类似模具温度下的持续功耗增加了50.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrical and Performance Benefits of Advanced Monolithic Cooling for 2.5D Heterogeneous ICs
The rising prominence of heterogeneous integration, coupled with increase in device power, presents unique thermal challenges. Past work has demonstrated the benefits of mono-lithic microfluidic cooling for mitigating these in 2.5D ICs. In this paper, we evaluate the electrical performance benefits of this technology using finite element modeling and experimental demonstration on functional silicon. Ansys models show up to 23.3 × lower thermal coupling between the core chiplets in a CPU with microfluidic cooling compared to traditional air-cooled configurations. Finally, we demonstrate a micropin-fin heatsink etched on the backside of five chiplets in a 2.5D FPGA package and capped with 3D printed manifolds for fluid delivery. A 50.5 % increase in sustained power dissipation for similar die temperatures was achieved with the monolithic heatsink using a 52.5 °C DI water inlet, when compared to the stock cold-plate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信