无铅焊料的现状-接头可靠性概述

V. Vasudevan, Tanner Schulz, M. Pei, F. Toth, A. Lucero, Bite Zhou, Sibasish Mukherjee
{"title":"无铅焊料的现状-接头可靠性概述","authors":"V. Vasudevan, Tanner Schulz, M. Pei, F. Toth, A. Lucero, Bite Zhou, Sibasish Mukherjee","doi":"10.1109/IRPS.2016.7574566","DOIUrl":null,"url":null,"abstract":"Over the past decade the electronics components industry successfully transitioned from the use of leaded solder to lead-free (Pb-free) solders in response to growing environmental health concerns related to heavy metals and other substances. Pbfree components in general are in compliance to meet the European restriction of hazardous substances (RoHS) directives. During the transition period to Pb-free surface mount, numerous issues were raised about the selected alloys, the board assembly process and reliability. Early Pb-free reliability concerns were due to incomplete analytical understanding of the Tin-Silver-Copper solder creep-fatigue behavior, difficulty in computing the magnitude of ball grid array (BGA) relative displacements or strains and lack of product field history. Since then the failure mechanisms were characterized and many models are in common use for reliability estimation and design. This manuscript revisits the initial concerns, reliability model use evolution and summarizes the current understanding that has resulted in a decade of reliable field operation for the Pb-free SAC solders selected.","PeriodicalId":172129,"journal":{"name":"2016 IEEE International Reliability Physics Symposium (IRPS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The state of Pb-free solder — A joint reliability overview\",\"authors\":\"V. Vasudevan, Tanner Schulz, M. Pei, F. Toth, A. Lucero, Bite Zhou, Sibasish Mukherjee\",\"doi\":\"10.1109/IRPS.2016.7574566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past decade the electronics components industry successfully transitioned from the use of leaded solder to lead-free (Pb-free) solders in response to growing environmental health concerns related to heavy metals and other substances. Pbfree components in general are in compliance to meet the European restriction of hazardous substances (RoHS) directives. During the transition period to Pb-free surface mount, numerous issues were raised about the selected alloys, the board assembly process and reliability. Early Pb-free reliability concerns were due to incomplete analytical understanding of the Tin-Silver-Copper solder creep-fatigue behavior, difficulty in computing the magnitude of ball grid array (BGA) relative displacements or strains and lack of product field history. Since then the failure mechanisms were characterized and many models are in common use for reliability estimation and design. This manuscript revisits the initial concerns, reliability model use evolution and summarizes the current understanding that has resulted in a decade of reliable field operation for the Pb-free SAC solders selected.\",\"PeriodicalId\":172129,\"journal\":{\"name\":\"2016 IEEE International Reliability Physics Symposium (IRPS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Reliability Physics Symposium (IRPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRPS.2016.7574566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.2016.7574566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的十年中,电子元件行业成功地从使用含铅焊料过渡到无铅(Pb-free)焊料,以应对与重金属和其他物质有关的日益增长的环境健康问题。一般来说,无铅成分符合欧洲有害物质限制(RoHS)指令。在向无铅表面贴装过渡的过程中,提出了许多关于合金选择、板装配工艺和可靠性的问题。早期的无铅可靠性问题是由于对锡-银-铜焊料蠕变疲劳行为的分析理解不完整,难以计算球栅阵列(BGA)相对位移或应变的大小以及缺乏产品的现场历史。从那时起,失效机制被描述,许多模型被普遍用于可靠性估计和设计。这份手稿重新审视了最初的关注,可靠性模型的使用演变,并总结了目前的理解,导致了十年来可靠的现场操作的无铅SAC焊料选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The state of Pb-free solder — A joint reliability overview
Over the past decade the electronics components industry successfully transitioned from the use of leaded solder to lead-free (Pb-free) solders in response to growing environmental health concerns related to heavy metals and other substances. Pbfree components in general are in compliance to meet the European restriction of hazardous substances (RoHS) directives. During the transition period to Pb-free surface mount, numerous issues were raised about the selected alloys, the board assembly process and reliability. Early Pb-free reliability concerns were due to incomplete analytical understanding of the Tin-Silver-Copper solder creep-fatigue behavior, difficulty in computing the magnitude of ball grid array (BGA) relative displacements or strains and lack of product field history. Since then the failure mechanisms were characterized and many models are in common use for reliability estimation and design. This manuscript revisits the initial concerns, reliability model use evolution and summarizes the current understanding that has resulted in a decade of reliable field operation for the Pb-free SAC solders selected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信