{"title":"栅极氧化物氢相关降解机理的研究","authors":"Y. Mitani, T. Yamaguchi, H. Satake, A. Toriumi","doi":"10.1109/RELPHY.2007.369896","DOIUrl":null,"url":null,"abstract":"In this paper, we have investigated the correlation between released hydrogen from Si/SiO2 interface and trap creation in bulk SiO2. The key point of these experiments is that hydrogen release from the interface is performed without trap creation in bulk SiO2 by injected hot carriers. Therefore, negative bias temperature (NBT) stress or substrate hot electron (SHE) stress was utilized to release hydrogen from Si/SiO2 interface. As a result, SILC is clearly observed after low voltage NBT stress in pMOSFETs. In this stress condition, impact ionization at anode interface due to injected hot electrons was negligible. In the same way, SILC is also observed by applying SHE stress in nMOSFETs. In addition, the SILC is suppressed by decreasing released hydrogen using fluorine incorporation in both stress conditions. From these results, we inferred that the released hydrogen from Si/SiO2 interface strongly correlates to the trap creation in gate oxides","PeriodicalId":433104,"journal":{"name":"2007 IEEE International Reliability Physics Symposium Proceedings. 45th Annual","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Reconsideration of Hydrogen-Related Degradation Mechanism in Gate Oxide\",\"authors\":\"Y. Mitani, T. Yamaguchi, H. Satake, A. Toriumi\",\"doi\":\"10.1109/RELPHY.2007.369896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have investigated the correlation between released hydrogen from Si/SiO2 interface and trap creation in bulk SiO2. The key point of these experiments is that hydrogen release from the interface is performed without trap creation in bulk SiO2 by injected hot carriers. Therefore, negative bias temperature (NBT) stress or substrate hot electron (SHE) stress was utilized to release hydrogen from Si/SiO2 interface. As a result, SILC is clearly observed after low voltage NBT stress in pMOSFETs. In this stress condition, impact ionization at anode interface due to injected hot electrons was negligible. In the same way, SILC is also observed by applying SHE stress in nMOSFETs. In addition, the SILC is suppressed by decreasing released hydrogen using fluorine incorporation in both stress conditions. From these results, we inferred that the released hydrogen from Si/SiO2 interface strongly correlates to the trap creation in gate oxides\",\"PeriodicalId\":433104,\"journal\":{\"name\":\"2007 IEEE International Reliability Physics Symposium Proceedings. 45th Annual\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Reliability Physics Symposium Proceedings. 45th Annual\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RELPHY.2007.369896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Reliability Physics Symposium Proceedings. 45th Annual","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RELPHY.2007.369896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reconsideration of Hydrogen-Related Degradation Mechanism in Gate Oxide
In this paper, we have investigated the correlation between released hydrogen from Si/SiO2 interface and trap creation in bulk SiO2. The key point of these experiments is that hydrogen release from the interface is performed without trap creation in bulk SiO2 by injected hot carriers. Therefore, negative bias temperature (NBT) stress or substrate hot electron (SHE) stress was utilized to release hydrogen from Si/SiO2 interface. As a result, SILC is clearly observed after low voltage NBT stress in pMOSFETs. In this stress condition, impact ionization at anode interface due to injected hot electrons was negligible. In the same way, SILC is also observed by applying SHE stress in nMOSFETs. In addition, the SILC is suppressed by decreasing released hydrogen using fluorine incorporation in both stress conditions. From these results, we inferred that the released hydrogen from Si/SiO2 interface strongly correlates to the trap creation in gate oxides