垂直堆叠纳米片场效应管的长期增强和抑制

Nupur Navlakha, Md. Hasan Raza Ansari
{"title":"垂直堆叠纳米片场效应管的长期增强和抑制","authors":"Nupur Navlakha, Md. Hasan Raza Ansari","doi":"10.1109/LAEDC58183.2023.10209120","DOIUrl":null,"url":null,"abstract":"This work showcases the feasibility of vertically stacked nanosheet FET (NSFET) for charge trapping-based synapse for neuromorphic applications. The calibrated simulation models mimic the long-term potentiation (LTP) and depression (LTD) of biological synapses. Use of stacked nanosheet device facilitates a dense memory with high current. The work also evaluates the effect of number of pulses for LTP and LTD on the image classification accuracy of the MNIST dataset. The neural network results show high linearity, conductance, and symmetric behavior between LTP and LTD that aids achieves $\\sim94.75$ % accuracy in image classification.","PeriodicalId":151042,"journal":{"name":"2023 IEEE Latin American Electron Devices Conference (LAEDC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-Term Potentiation and Depression with Vertically Stacked Nanosheet FET\",\"authors\":\"Nupur Navlakha, Md. Hasan Raza Ansari\",\"doi\":\"10.1109/LAEDC58183.2023.10209120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work showcases the feasibility of vertically stacked nanosheet FET (NSFET) for charge trapping-based synapse for neuromorphic applications. The calibrated simulation models mimic the long-term potentiation (LTP) and depression (LTD) of biological synapses. Use of stacked nanosheet device facilitates a dense memory with high current. The work also evaluates the effect of number of pulses for LTP and LTD on the image classification accuracy of the MNIST dataset. The neural network results show high linearity, conductance, and symmetric behavior between LTP and LTD that aids achieves $\\\\sim94.75$ % accuracy in image classification.\",\"PeriodicalId\":151042,\"journal\":{\"name\":\"2023 IEEE Latin American Electron Devices Conference (LAEDC)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Latin American Electron Devices Conference (LAEDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LAEDC58183.2023.10209120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Latin American Electron Devices Conference (LAEDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LAEDC58183.2023.10209120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作展示了垂直堆叠纳米片FET (NSFET)用于基于电荷捕获的突触的神经形态应用的可行性。校正后的模拟模型模拟了生物突触的长期增强(LTP)和抑制(LTD)。采用堆叠纳米片器件,可实现高电流的高密度存储器。本文还评估了LTP和LTD脉冲数对MNIST数据集图像分类精度的影响。神经网络结果显示LTP和LTD之间具有较高的线性、电导和对称行为,有助于在图像分类中达到$\sim94.75$ %的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long-Term Potentiation and Depression with Vertically Stacked Nanosheet FET
This work showcases the feasibility of vertically stacked nanosheet FET (NSFET) for charge trapping-based synapse for neuromorphic applications. The calibrated simulation models mimic the long-term potentiation (LTP) and depression (LTD) of biological synapses. Use of stacked nanosheet device facilitates a dense memory with high current. The work also evaluates the effect of number of pulses for LTP and LTD on the image classification accuracy of the MNIST dataset. The neural network results show high linearity, conductance, and symmetric behavior between LTP and LTD that aids achieves $\sim94.75$ % accuracy in image classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信