A. N. Campbell, K. Peterson, D. Fleetwood, J. Soden
{"title":"聚焦离子束辐照对MOS晶体管的影响","authors":"A. N. Campbell, K. Peterson, D. Fleetwood, J. Soden","doi":"10.1109/RELPHY.1997.584241","DOIUrl":null,"url":null,"abstract":"The effects of irradiation from a focused ion beam (FIB) system on MOS transistors are reported systematically for the first time. Three MOS transistor technologies, with 0.5, 1, and 3 /spl mu/m minimum feature sizes and with gate oxide thicknesses ranging from 11 to 50 nm, were analyzed. Significant shifts in transistor parameters (such as threshold voltage, transconductance, and mobility) were observed following irradiation with a 30 keV Ga/sup +/ focused ion beam with ion doses varying by over 5 orders of magnitude. The apparent damage mechanism (which involved the creation of interface traps, oxide trapped charge, or both) and extent of damage were different for each of the three technologies investigated.","PeriodicalId":193458,"journal":{"name":"1997 IEEE International Reliability Physics Symposium Proceedings. 35th Annual","volume":"205 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Effects of focused ion beam irradiation on MOS transistors\",\"authors\":\"A. N. Campbell, K. Peterson, D. Fleetwood, J. Soden\",\"doi\":\"10.1109/RELPHY.1997.584241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effects of irradiation from a focused ion beam (FIB) system on MOS transistors are reported systematically for the first time. Three MOS transistor technologies, with 0.5, 1, and 3 /spl mu/m minimum feature sizes and with gate oxide thicknesses ranging from 11 to 50 nm, were analyzed. Significant shifts in transistor parameters (such as threshold voltage, transconductance, and mobility) were observed following irradiation with a 30 keV Ga/sup +/ focused ion beam with ion doses varying by over 5 orders of magnitude. The apparent damage mechanism (which involved the creation of interface traps, oxide trapped charge, or both) and extent of damage were different for each of the three technologies investigated.\",\"PeriodicalId\":193458,\"journal\":{\"name\":\"1997 IEEE International Reliability Physics Symposium Proceedings. 35th Annual\",\"volume\":\"205 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1997 IEEE International Reliability Physics Symposium Proceedings. 35th Annual\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RELPHY.1997.584241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1997 IEEE International Reliability Physics Symposium Proceedings. 35th Annual","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RELPHY.1997.584241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of focused ion beam irradiation on MOS transistors
The effects of irradiation from a focused ion beam (FIB) system on MOS transistors are reported systematically for the first time. Three MOS transistor technologies, with 0.5, 1, and 3 /spl mu/m minimum feature sizes and with gate oxide thicknesses ranging from 11 to 50 nm, were analyzed. Significant shifts in transistor parameters (such as threshold voltage, transconductance, and mobility) were observed following irradiation with a 30 keV Ga/sup +/ focused ion beam with ion doses varying by over 5 orders of magnitude. The apparent damage mechanism (which involved the creation of interface traps, oxide trapped charge, or both) and extent of damage were different for each of the three technologies investigated.