{"title":"低电压4H-SiC MOSFET设计中的界面陷阱效应","authors":"G. de Martino, F. Pezzimenti, F. D. Della Corte","doi":"10.1109/SMICND.2018.8539744","DOIUrl":null,"url":null,"abstract":"The current-voltage characteristics of a 4H-SiC MOSFET dimensioned for a breakdown voltage of 650 V are investigated by means of a numerical simulation study that takes into account the defect state distribution at the oxide-semiconductor interface in the channel region. The modelling analysis reveals that, for these low-voltage devices, the channel resistance component plays a key role in determining the MOSFET specific ON-state resistance (RON) under different voltage biases and temperatures. The RON value is in the order of a few mΩ×cm2.","PeriodicalId":247062,"journal":{"name":"2018 International Semiconductor Conference (CAS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Interface Trap Effects in the Design of a 4H-SiC MOSFET for Low Voltage Applications\",\"authors\":\"G. de Martino, F. Pezzimenti, F. D. Della Corte\",\"doi\":\"10.1109/SMICND.2018.8539744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current-voltage characteristics of a 4H-SiC MOSFET dimensioned for a breakdown voltage of 650 V are investigated by means of a numerical simulation study that takes into account the defect state distribution at the oxide-semiconductor interface in the channel region. The modelling analysis reveals that, for these low-voltage devices, the channel resistance component plays a key role in determining the MOSFET specific ON-state resistance (RON) under different voltage biases and temperatures. The RON value is in the order of a few mΩ×cm2.\",\"PeriodicalId\":247062,\"journal\":{\"name\":\"2018 International Semiconductor Conference (CAS)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Semiconductor Conference (CAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMICND.2018.8539744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Semiconductor Conference (CAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMICND.2018.8539744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interface Trap Effects in the Design of a 4H-SiC MOSFET for Low Voltage Applications
The current-voltage characteristics of a 4H-SiC MOSFET dimensioned for a breakdown voltage of 650 V are investigated by means of a numerical simulation study that takes into account the defect state distribution at the oxide-semiconductor interface in the channel region. The modelling analysis reveals that, for these low-voltage devices, the channel resistance component plays a key role in determining the MOSFET specific ON-state resistance (RON) under different voltage biases and temperatures. The RON value is in the order of a few mΩ×cm2.