Chun-Yu Lin, Li-Wei Chu, M. Ker, Ming-Hsiang Song, C. Jou, T. Lu, J. Tseng, M. Tsai, T. Hsu, P. Hung, T. Chang
{"title":"具有电感触发可控硅的ESD保护结构,用于65纳米CMOS工艺的射频应用","authors":"Chun-Yu Lin, Li-Wei Chu, M. Ker, Ming-Hsiang Song, C. Jou, T. Lu, J. Tseng, M. Tsai, T. Hsu, P. Hung, T. Chang","doi":"10.1109/IRPS.2012.6241893","DOIUrl":null,"url":null,"abstract":"To protect radio-frequency (RF) integrated circuits from electrostatic discharge (ESD) damages, silicon-controlled rectifier (SCR) devices have been used as main on-chip ESD protection devices due to their high ESD robustness and low parasitic capacitance in nanoscale CMOS technologies. In this work, the SCR device assisted with an inductor to resonate at the selected frequency band for RF performance fine tune was proposed. Besides, the inductor can be also designed to improve the turn-on efficiency of the SCR device for ESD protection. Verified in a 65-nm CMOS process, the ESD protection design with the inductor-triggered SCR for 60-GHz RF applications can achieve good RF performances and high ESD robustness.","PeriodicalId":341663,"journal":{"name":"2012 IEEE International Reliability Physics Symposium (IRPS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"ESD protection structure with inductor-triggered SCR for RF applications in 65-nm CMOS process\",\"authors\":\"Chun-Yu Lin, Li-Wei Chu, M. Ker, Ming-Hsiang Song, C. Jou, T. Lu, J. Tseng, M. Tsai, T. Hsu, P. Hung, T. Chang\",\"doi\":\"10.1109/IRPS.2012.6241893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To protect radio-frequency (RF) integrated circuits from electrostatic discharge (ESD) damages, silicon-controlled rectifier (SCR) devices have been used as main on-chip ESD protection devices due to their high ESD robustness and low parasitic capacitance in nanoscale CMOS technologies. In this work, the SCR device assisted with an inductor to resonate at the selected frequency band for RF performance fine tune was proposed. Besides, the inductor can be also designed to improve the turn-on efficiency of the SCR device for ESD protection. Verified in a 65-nm CMOS process, the ESD protection design with the inductor-triggered SCR for 60-GHz RF applications can achieve good RF performances and high ESD robustness.\",\"PeriodicalId\":341663,\"journal\":{\"name\":\"2012 IEEE International Reliability Physics Symposium (IRPS)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Reliability Physics Symposium (IRPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRPS.2012.6241893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.2012.6241893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ESD protection structure with inductor-triggered SCR for RF applications in 65-nm CMOS process
To protect radio-frequency (RF) integrated circuits from electrostatic discharge (ESD) damages, silicon-controlled rectifier (SCR) devices have been used as main on-chip ESD protection devices due to their high ESD robustness and low parasitic capacitance in nanoscale CMOS technologies. In this work, the SCR device assisted with an inductor to resonate at the selected frequency band for RF performance fine tune was proposed. Besides, the inductor can be also designed to improve the turn-on efficiency of the SCR device for ESD protection. Verified in a 65-nm CMOS process, the ESD protection design with the inductor-triggered SCR for 60-GHz RF applications can achieve good RF performances and high ESD robustness.