R. Ishihara, J. Hermias, S. Neji, K. Yu, M. van der Maas, S. Nur, T. Iwai, T. Miyatake, S. Miyahara, K. Kawaguchi, S. Sato
{"title":"基于金刚石自旋量子比特的模块化量子计算机三维集成","authors":"R. Ishihara, J. Hermias, S. Neji, K. Yu, M. van der Maas, S. Nur, T. Iwai, T. Miyatake, S. Miyahara, K. Kawaguchi, S. Sato","doi":"10.1109/IITC/MAM57687.2023.10154649","DOIUrl":null,"url":null,"abstract":"Quantum computer chip based on spin qubits in diamond uses modules that are entangled with on-chip optical links. This enables an increased connectivity and a negligible crosstalk and error-rate when the number of qubits increases onchip. Here, 3D integration is the key enabling technology for a large-scale integration of the diamond spin qubits with photonic and electronic circuits for routing, control and readout of qubits. There are several engineering challenges to integrate the large number of spins in diamond with the on-chip circuits operating at a cryogenic temperature. In this paper we will address challenges, present recent results and discuss future outlook of the integration technology for realization of a scalable quantum computer based on diamond spin qubits.","PeriodicalId":241835,"journal":{"name":"2023 IEEE International Interconnect Technology Conference (IITC) and IEEE Materials for Advanced Metallization Conference (MAM)(IITC/MAM)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D Integration for Modular Quantum Computer based on Diamond Spin Qubits\",\"authors\":\"R. Ishihara, J. Hermias, S. Neji, K. Yu, M. van der Maas, S. Nur, T. Iwai, T. Miyatake, S. Miyahara, K. Kawaguchi, S. Sato\",\"doi\":\"10.1109/IITC/MAM57687.2023.10154649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum computer chip based on spin qubits in diamond uses modules that are entangled with on-chip optical links. This enables an increased connectivity and a negligible crosstalk and error-rate when the number of qubits increases onchip. Here, 3D integration is the key enabling technology for a large-scale integration of the diamond spin qubits with photonic and electronic circuits for routing, control and readout of qubits. There are several engineering challenges to integrate the large number of spins in diamond with the on-chip circuits operating at a cryogenic temperature. In this paper we will address challenges, present recent results and discuss future outlook of the integration technology for realization of a scalable quantum computer based on diamond spin qubits.\",\"PeriodicalId\":241835,\"journal\":{\"name\":\"2023 IEEE International Interconnect Technology Conference (IITC) and IEEE Materials for Advanced Metallization Conference (MAM)(IITC/MAM)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Interconnect Technology Conference (IITC) and IEEE Materials for Advanced Metallization Conference (MAM)(IITC/MAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IITC/MAM57687.2023.10154649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Interconnect Technology Conference (IITC) and IEEE Materials for Advanced Metallization Conference (MAM)(IITC/MAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITC/MAM57687.2023.10154649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3D Integration for Modular Quantum Computer based on Diamond Spin Qubits
Quantum computer chip based on spin qubits in diamond uses modules that are entangled with on-chip optical links. This enables an increased connectivity and a negligible crosstalk and error-rate when the number of qubits increases onchip. Here, 3D integration is the key enabling technology for a large-scale integration of the diamond spin qubits with photonic and electronic circuits for routing, control and readout of qubits. There are several engineering challenges to integrate the large number of spins in diamond with the on-chip circuits operating at a cryogenic temperature. In this paper we will address challenges, present recent results and discuss future outlook of the integration technology for realization of a scalable quantum computer based on diamond spin qubits.