弹性光网络自适应混沌飓风辅助有效功率分配

IF 1.9 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Layhon R.R. dos Santos , Taufik Abrão
{"title":"弹性光网络自适应混沌飓风辅助有效功率分配","authors":"Layhon R.R. dos Santos ,&nbsp;Taufik Abrão","doi":"10.1016/j.osn.2020.100595","DOIUrl":null,"url":null,"abstract":"<div><p><span>The proposed adaptive power control based on the chaotic hurricane search optimization (A-CHSO) for elastic optical networks (EON)s dynamically and efficiently adjusts the power increasing (</span><em>r</em><sub>0</sub><span><span>) parameter taking into account the quality of transmission (QoT), which is measured by the optical performance monitors (OPM)s. For sake of comparison, three alternative power assignment methods are analyzed, the analytical gradient descent (GD), as well as two low-complexity methods, namely the egoistic </span>power allocation (EPA) and the enough power allocation (EnPA). Numerical results demonstrate a promising performance-complexity trade-off for the A-CHSO regarding the GD, EPA and EnPA methods, as well as a substantial network margin reduction, energy efficiency increasing, and cost reduction. The A-CHSO has been proved to be an efficient power allocation (PA) method for operation in EONs, corroborating the dynamical and flexible aspects of the EONs.</span></p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"39 ","pages":"Article 100595"},"PeriodicalIF":1.9000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.osn.2020.100595","citationCount":"2","resultStr":"{\"title\":\"Adaptive chaotic hurricane-aided efficient power assignment for elastic optical networks\",\"authors\":\"Layhon R.R. dos Santos ,&nbsp;Taufik Abrão\",\"doi\":\"10.1016/j.osn.2020.100595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The proposed adaptive power control based on the chaotic hurricane search optimization (A-CHSO) for elastic optical networks (EON)s dynamically and efficiently adjusts the power increasing (</span><em>r</em><sub>0</sub><span><span>) parameter taking into account the quality of transmission (QoT), which is measured by the optical performance monitors (OPM)s. For sake of comparison, three alternative power assignment methods are analyzed, the analytical gradient descent (GD), as well as two low-complexity methods, namely the egoistic </span>power allocation (EPA) and the enough power allocation (EnPA). Numerical results demonstrate a promising performance-complexity trade-off for the A-CHSO regarding the GD, EPA and EnPA methods, as well as a substantial network margin reduction, energy efficiency increasing, and cost reduction. The A-CHSO has been proved to be an efficient power allocation (PA) method for operation in EONs, corroborating the dynamical and flexible aspects of the EONs.</span></p></div>\",\"PeriodicalId\":54674,\"journal\":{\"name\":\"Optical Switching and Networking\",\"volume\":\"39 \",\"pages\":\"Article 100595\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.osn.2020.100595\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Switching and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1573427720301259\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1573427720301259","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于混沌飓风搜索优化(A-CHSO)的弹性光网络自适应功率控制方法,该方法考虑了光性能监测仪测量的传输质量(QoT),动态有效地调整了功率增量(r0)参数。为了比较,分析了三种可供选择的权力分配方法,即解析梯度下降法(GD),以及两种低复杂度的权力分配方法,即利己主义权力分配法(EPA)和足够权力分配法(EnPA)。数值结果表明,在GD、EPA和EnPA方法中,a - chso具有良好的性能-复杂性权衡,并显著降低了网络裕度,提高了能源效率,降低了成本。A-CHSO已被证明是一种有效的永网运行功率分配方法,证实了永网的动态性和灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive chaotic hurricane-aided efficient power assignment for elastic optical networks

The proposed adaptive power control based on the chaotic hurricane search optimization (A-CHSO) for elastic optical networks (EON)s dynamically and efficiently adjusts the power increasing (r0) parameter taking into account the quality of transmission (QoT), which is measured by the optical performance monitors (OPM)s. For sake of comparison, three alternative power assignment methods are analyzed, the analytical gradient descent (GD), as well as two low-complexity methods, namely the egoistic power allocation (EPA) and the enough power allocation (EnPA). Numerical results demonstrate a promising performance-complexity trade-off for the A-CHSO regarding the GD, EPA and EnPA methods, as well as a substantial network margin reduction, energy efficiency increasing, and cost reduction. The A-CHSO has been proved to be an efficient power allocation (PA) method for operation in EONs, corroborating the dynamical and flexible aspects of the EONs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optical Switching and Networking
Optical Switching and Networking COMPUTER SCIENCE, INFORMATION SYSTEMS-OPTICS
CiteScore
5.20
自引率
18.20%
发文量
29
审稿时长
77 days
期刊介绍: Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time. Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to: • Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks • Optical Data Center Networks • Elastic optical networks • Green Optical Networks • Software Defined Optical Networks • Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer) • Optical Networks for Interet of Things (IOT) • Home Networks, In-Vehicle Networks, and Other Short-Reach Networks • Optical Access Networks • Optical Data Center Interconnection Systems • Optical OFDM and coherent optical network systems • Free Space Optics (FSO) networks • Hybrid Fiber - Wireless Networks • Optical Satellite Networks • Visible Light Communication Networks • Optical Storage Networks • Optical Network Security • Optical Network Resiliance and Reliability • Control Plane Issues and Signaling Protocols • Optical Quality of Service (OQoS) and Impairment Monitoring • Optical Layer Anycast, Broadcast and Multicast • Optical Network Applications, Testbeds and Experimental Networks • Optical Network for Science and High Performance Computing Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信